摘要
以耦合复金兹堡–朗道(Ginzburg-Landau)方程系统为模型,研究了在周期边界条件下和初始条件下它的拉回吸引子的存在性。主要采用能量方程方法来进行证明:首先证明在W中存在一个闭过程且有界,从而证明该闭过程存在一个拉回吸收集;其次,当满足初值有界条件时,证明该闭过程满足拉回条件C,因此证实了该Ginzburg-Landau方程组存在拉回吸引子。
The coupled complex Ginzburg Landau equation system for model to study the existence of pullback attractor under periodic boundary conditions and initial conditions. The method of energy equations is mainly used in this paper. First, when the closed process exists in W, and the closed process is bounded, the existence of the pull-back absorbing set is obtained. Second, when the initial and boundary condition are satisfied, the pull-back condition C is used to prove the existence of pullback attractor for the coupled Ginzburg-Landau equations.
出处
《湖南文理学院学报(自然科学版)》
CAS
2017年第4期4-7,11,共5页
Journal of Hunan University of Arts and Science(Science and Technology)
基金
广东省普通高校青年创新人才项目(2016KQNCX229)
广东省"创新强项工程"专项建设项目
华农珠江学院经费资助