期刊文献+

一种快速鲁棒的视频序列运动目标检测方法 被引量:4

An Approach to Fast and Robust Detecting of Moving Target in Video Sequences
下载PDF
导出
摘要 稀疏表示已经成为运动目标检测的有效方法之一,但其还没有很好地解决目标检测的快速性和鲁棒性.本文基于最大后验概率提出了一种快速鲁棒的运动目标检测模型,并设计了该模型的求解算法.该算法包括两个阶段:在第一阶段利用编码迁移实现稀疏系数的快速求解;在第二阶段基于运动目标的空间连续性结构,利用图切实现目标检测.在多个具有挑战性的图像序列上的实验结果表明,与其他经典运动目标检测算法相比,本文方法在快速性和鲁棒性方面具有较优的性能. Sparse representation is one of effective methods in dealing with the moving object detection. However,the quickness and robustness of object detection are far from being solved in the existing methods. In this paper,a fast and robust moving object detection model based on the maximum posteriori probability is proposed,and a two-stage detection algorithms is designed. At the first stage,sparse coefficient is quickly solved by using coding transfer; At the second stage,based on spatial continuity structure,moving object detection is achieved by using graph cut. The experimental results on several challenging image sequences showthat the proposed method has better performance than the existing classical moving object detection algorithms in rapidity and robustness.
出处 《电子学报》 EI CAS CSCD 北大核心 2017年第10期2355-2361,共7页 Acta Electronica Sinica
基金 安徽省自然科学基金(No.1508085QF114 No.1608085QF144) 国家自然科学基金(No.61379105) 中国博士后科学基金(No.2014M562535)
关键词 运动目标检测 稀疏表示 编码迁移 图切 moving object detection sparse representation coding transfer graph cut
  • 相关文献

参考文献3

二级参考文献38

  • 1焦李成,谭山.图像的多尺度几何分析:回顾和展望[J].电子学报,2003,31(z1):1975-1981. 被引量:227
  • 2刘健庄,栗文青.灰度图象的二维Otsu自动阈值分割法[J].自动化学报,1993,19(1):101-105. 被引量:357
  • 3汪海洋,潘德炉,夏德深.二维Otsu自适应阈值选取算法的快速实现[J].自动化学报,2007,33(9):968-971. 被引量:135
  • 4Mehmet Sezgin, Bulent Sankur. Survey over image thresholding techniques and quantitative performance evaluationE J]. Journal of Electronic Imaging,2004,13( 1 ) : 146 - 165.
  • 5Otsu N. A threshold selection method from gray-level his- togrants[J]. IFEE Transactions on System Man and Cybernet- ic, 1979,9(1) :62 - 66.
  • 6Sahoo P K, Soltani S, Wong A K C, Chen Y C. A survey of thresholding techniques[J]. Computer Vision,Graphics and Im- age Processing, 1988,41:233 - 260.
  • 7Reddi S S, Rudin S F, Keshavan H R. An optimal multiple threshold scheme for image segmentation [ J ]. IEEE Transac- tions on System Man and Cybemetic, 1984,14 (4) : 661 - 665.
  • 8Hart I_ze,Rae-Hong Park. Comments on "an optimal multiple threshold scheme for image segmentation" [ J]. IEEE Transac- tions on System Man and Cybernetic, 1990,20(3) :741 - 742.
  • 9Huang Deng-yuan, Wang Chia-hung. Optimal mtflti-level thresholding using a two stage Otsu optimization approach [ J ]. Pattern Recognition Letters, 2009,30: 275 - 284.
  • 10Li Zuo-yong, Yang Jian, Liu Guang-hai, et al. Unsupervised rangeconstrained thresholding [ J]. Pattern Recognition Let- ters,2011,32:392 - 402.

共引文献116

同被引文献48

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部