期刊文献+

云环境下面向跨域作业的调度方法

A Scheduling Strategy for Jobs Across Geo-Distributed Datacenters in Cloud Computing
下载PDF
导出
摘要 云环境下,因数据局部性或是任务对资源的特殊偏好,一个作业所包含的任务往往需要在不同的数据中心局点上运行,此类作业称为跨域作业.跨域作业的完成时间取决于最慢任务的执行效率,即存在木桶效应.针对各域资源能力异构条件下不合理的调度策略导致跨域作业执行时间跨度过长的问题,本文提出一种面向跨域作业的启发式调度方法 MIN-Max-Min,优先选择期望完成时间最短的作业执行.通过实验表明,与先来先服务的策略相比,该方法能将跨域作业平均执行时间跨度减少40%以上. In cloud computing,tasks in a job often need to run on different datacenters due to the input data locality or special preference for resources,that is,the job runs across geo-distributed sites. The different tasks in a job have to be scheduled in different domain( data center) to execute for their personalization requirements,so the job completion time depends on the slowest task,which is called"barrel effect". As geo-distributed scheduling strategy without regard to heterogeneous resources leads too long execution time span,this dissertation proposes an optimization strategy for geo-distributed scheduling named M IN-M ax-M in. The strategy gives priority to select the expectation shortest completion job to execute by heuristic rule. Experiments showthat compared with first come first service strategy,the strategy can reduce cross domain average execution time span to less than 40% under the simulation load.
出处 《电子学报》 EI CAS CSCD 北大核心 2017年第10期2416-2424,共9页 Acta Electronica Sinica
基金 国家自然科学基金(No.61402464 No.61602467)
关键词 云计算 跨域数据中心 跨域作业 cloud computing geo-distributed data centers jobs across geo-distributed data centers
  • 相关文献

参考文献4

二级参考文献48

  • 1张伟哲,田志宏,张宏莉,何慧,刘文懋.虚拟计算环境中的多机群协同调度算法[J].软件学报,2007,18(8):2027-2037. 被引量:9
  • 2Jiang Y C, Jiang J C. Contextual resource negotiation-based task allocation and load balancing in complex software sys- tems [ J ]. IEEE Trans Parallel and Distributed Systems, 2009,20(5 ) :641 - 653.
  • 3Gary M R, Johnson D S. Computers and Intractability: A Guide to the Theory of NP-Completeness [M]. New York, NY,USA:W H Freeman and Co, 1979.
  • 4Ullman J D. NP-complete scheduling problems [ J ]. J Com- puter and Systems Sciences, 1975,10:384 - 393.
  • 5Gkoutioudi K Z, Karatza H D. Multi-criteria job scheduling in grid using an accelerated genetic algorithm [ J ]. J Grid Computing,2012,10 (2) : 311 - 323.
  • 6Omara F A, Arafa M M. Genetic algorithms for task sched- uling problem [ J ]. J Parallel and Distributed Computing, 2010,70( 1 ) :13 -22.
  • 7Hu X S, Dick R P. Temperature-aware scheduling and as- signment for hard real-time applications on MPSoCs [ J ]. IEEE Trans Very Large Scale Integration Systems,2011,19 (10) :1884 - 1897.
  • 8Chakrabarti P P, Kumar R. Online scheduling of dynamic task graphs with communication and contention for multi- processors[ J]. IEEE Trans on Parallel and Distributed Sys- tems ,2012,23 ( 1 ) : 138 - 153.
  • 9Wen Y, Xu H, Yang J D. A heuristic-based hybrid genetic- variable neighborhood search algorithm for task scheduling in heterogeneous multiprocessor system [ J ]. Information Sciences, 2011,181 ( 3 ) : 567 - 581.
  • 10Sinnen O, To A, Kaur M. Contention-aware scheduling with task duplication [ J ]. J Parallel and Distributed Computing, 2011,71(1) :77 -86.

共引文献198

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部