期刊文献+

一种基于小波分量变换的人脸图像光照归一化算法 被引量:4

Illumination Normalization Algorithm for Face Image Based on Wavelet Component Transform
下载PDF
导出
摘要 基于小波变换原理,提出一种基于小波分量变换的人脸图像光照归一化算法.人脸图像经过二维离散小波变换(DWT),被分解成4个子分量(LL,HL,LH,HH).将低频分量(LL)进行对数变换和分段线性变换,对高频分量(LH,HL,HH)进行Gamma变换.对所有子分量进行小波逆变换,对经小波重构后的人脸图像进行中值滤波.分别在Yale B和CMU-PIE人脸数据库中对本文算法进行光照归一化有效性试验;对比本文算法与其他22种光照归一化算法的处理时间及处理效果;进行分段线性变换和伽马变换参数比较试验及人脸识别试验.结果表明:本文算法执行速度快,处理效果好,人脸识别率高,适用于不同光照条件的人脸识别系统. A wavelet transform based face image illumination algorithm is proposed based on the principle of wavelet transform. A face image is decomposed into four sub components by two-dimensional discrete wavelet transform (DWT),which are low frequency components (LL) and high frequency sub components (HL,LH, HH). The LL component is transformed by logarithm and piecewise linear transformation,and the LH,HL and HH components are transformed by Gamma. All sub components are used to wavelet reconstruct ( IDWT) and median filter the face image. In Yale B and CMU-PIE face database,experimental effectiveness of light treatment of the algorithm, the processing time of this algorithm compared with 22 other illumination normalization algorithms and the treatment effect were carried out, parameter piecewise linear transformation of comparative experimental comparison test and gamma transform parameters, face recognition experiments were carried out successively. The experimental results show that the proposed algorithm is fast,effective,and has high recognition rate. It can be applied to face recognition system with different illumination conditions.
出处 《北华大学学报(自然科学版)》 CAS 2017年第5期689-696,共8页 Journal of Beihua University(Natural Science)
基金 广东省科学技术厅项目(粤科产学研字第[2016]176号)
关键词 小波变换 光照 对数域变换 分段线性变换 伽马变换 wavelet transform illumination log-domain conversion piecewise linear transform Gamma transform
  • 相关文献

参考文献5

二级参考文献79

  • 1高连如,张兵,张霞,申茜.基于局部标准差的遥感图像噪声评估方法研究[J].遥感学报,2007,11(2):201-208. 被引量:54
  • 2JAVIER R D S,QUINTEROS J. Illumination compensation and normalization in eigenspace-based face recognition:a comparative study of different pre-processing approaches[J].Pattern Recognition Letters,2008,29(14):1966-1979.
  • 3NABATCHIAN A,ABDEL-RAHEEM E,AHMADI M. Illumination invariant feature extraction and mutual-information-based local matching for face recognition under illumination variation and occlusion[J].Pattern Recognition,2011,44(10):2576-2587.
  • 4ADINI Y,MOSES Y,ULLMAN S. Face recognition:the problem of compensating for changes in illumination direction[J].IEEE Trans on Pattern Analysis and Machine Intelligence,1997,19(7):721-732.
  • 5TURK M A,PENTLAND A P. Face recognition using eigenfaces[C] //Proc of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. [S. l.] :IEEE Press,1991:586-591.
  • 6BELHUMEUR P N,HESPANHA J P,KRIEGMAN D J. Eigenfaces vs. fisherfaces:recognition using class specific linear projection[J].IEEE Trans on Pattern Analysis and Machine Intelligence,1997,19(7):711-720.
  • 7GEORGHIADES A S,BELHUMEUR P N,KRIEGMAN D J. From few to many:illumination cone models for face recognition under variable lighting and pose[J].IEEE Trans on Pattern Analysis and Machine Intelligence,2001,23(6):643-660.
  • 8BASRI R,JACOBS D W. Lambertian reflectance and linear subspaces[J].IEEE Trans on Pattern Analysis and Machine Intelligence,2003,25(2):218-233.
  • 9SHAN Shi-guang,GAO Wen,CAO Bo,et al. Illumination normalization for robust face recognition against varying lighting conditions[C] //Proc of IEEE International Workshop on Analysis and Modeling of Faces and Gestures. [S. l.] :IEEE Press,2003:157-164.
  • 10GAO Yong-sheng,LEUNG M K H. Face recognition using line edge map[J].IEEE Trans on Pattern Analysis and Machine Intelligence,2002,24(6):764-779.

共引文献17

同被引文献33

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部