期刊文献+

中药分析中质谱数据的可视化分析技术及其应用 被引量:2

Applications of Mass Spectrometry Combined with Data Visualization Techniques in Research of Traditional Chinese Drugs Analysis
下载PDF
导出
摘要 中药成分复杂多样,含量千差万别;然而随着质谱技术日新月异的发展,能从中药样本中获得的原始数据急剧增长,这为进一步的中药质谱数据解析提出了新的挑战。质谱数据的可视化数据处理技术能够从多角度辅助解析质谱数据,实现解析过程的图像化、高效率、多视角;在中药分析中,通过数据挖掘手段,获得中药成分、来源、亲缘关系等相关信息,进一步揭示药效基础、毒性作用、代谢途径等深层次信息,探索潜在的疾病生物标记物、疾病诊断因子,成为寻找潜在药物靶点、设计先导化合物、开发新药的有力工具。通过综述近年来国内外中药质谱可视化分析技术相关文献,介绍质谱数据的可视化分析技术及其在中药分析中的具体应用,希望能为广大中药研究者提供有益参考。 There are many components in traditional Chinese medicine, with contents varies. As the updated technol- ogies in mass spectrometry industry, we could obtain the data with exponential growth, which brings heavy tasks for inves- tigators. The data visualization techniques can help analyzing mass spectrometry in a broad way, realizing the whole ana- lyzing progress visible and high - efficiency from multiple angles. We can obtain the chemical components, origins, clus- ter relation information from theses TCM drugs as well as enclosure effects and mechanisms, toxicity, metabolic path- ways, biomarkers and diagnosis factors. It is a powerful tool for leading compound design and drug discovery. This paper reviewed the application of mass spectrometry coupled with data visualization techniques in vivo - vitro analysis of tradi- tional Chinese drugs.
出处 《中华中医药学刊》 CAS 北大核心 2017年第12期3138-3142,I0027-I0032,共11页 Chinese Archives of Traditional Chinese Medicine
基金 国家自然科学基金青年科学基金项目(81703707) 浙江省教育厅一般科研项目(Y201738438) 浙江省科技厅科技计划项目(2013C33179) 浙江中医药大学校级科研基金项目[(2015)751200F011]
关键词 中药分析 质谱数据可视化分析 代谢组学 生物标记物 traditional Chinese drugs analysis mass spectrometry data visualization metabonomics biomarkers
  • 相关文献

参考文献2

二级参考文献12

  • 1冒海蕾,徐旻,王斌,王惠民,邓小明,林东海.正交信号校正在正常成人血清^1H NMR谱的代谢组分析中的滤噪作用评价[J].化学学报,2007,65(2):152-158. 被引量:29
  • 2Eriksson L, Johansson E, Kettaneh-Wold N, et al. Multi- and megavariate data analysis principles and applications[D]. Umeatrics Academy, Umetrics AB, Sweden. 2001.
  • 3Trygg J, Holmes E, Lundstedt T. Chemometrics in metabonomics[J].J Proteome Res, 2007,6 (2):469-479.
  • 4A J, Trygg J, Gullberg J, et al. Extraction and GC/MS analysis of the human blood plasma metabolome[J]. Analytical Chemistry, 2005, 77(24):8086-8094.
  • 5蒋红卫,夏结来,李园,于莉莉.偏最小二乘判别分析在基因微阵列分型中的应用[J].中国卫生统计,2007,24(4):372-374. 被引量:18
  • 6Barker M,Rayens W. Partial least squares for discrimination. Journal of Chemometrics ,2003,17 ( 3 ) : 166-173.
  • 7Trygg J, Wold S. Orthogonal projections to latent structures (O-PLS). Journal of Chemometrics ,2002,16 : 119-128.
  • 8Bylesjo M, Rantalainen M, Cloarec O, et al. OPLS discriminant analysis: combining the strengths of PLS-DA and SIMCA classification. Journal of Chemometrics, 2006,20 : 341-351.
  • 9Tapp HS, Kemsley EK. Notes on the practical utility of OPLS. Trends in Analytical Chemistry ,2009,28 ( 11 ) : 1322-1327.
  • 10Wold S. Cross-Validatory estimation of the Number of Components in Factor and Principal Components Models. TEchnometrics ,1978,20:397-405.

共引文献172

同被引文献57

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部