期刊文献+

纳米SiO_2改性水性聚氨酯胶粘剂的制备及性能 被引量:11

Preparation and properties of nano-SiO_2 modified waterborne polyurethane adhesives
下载PDF
导出
摘要 以PBA(聚酯二元醇)、IPDI(异佛尔酮二异氰酸酯)、DMPA(2,2-二羟甲基丙酸)和BDO(1,4-丁二醇)为原料,DBTDL(二月桂酸二丁基锡)为催化剂,TEA(三乙胺)为中和剂,乙二胺为扩链剂,水为介质,采用共混法和原位聚合法合成了纳米SiO_2(纳米二氧化硅)改性WPU(水性聚氨酯)胶粘剂。研究结果表明:纳米SiO_2能有效提高WPU胶膜的热稳定性,并且采用原位聚合法制得的纳米SiO_2改性WPU胶粘剂之性能优于共混法;当w(纳米SiO_2)=2.0%、w(DMPA)=4.7%(均相对于预聚体质量而言)和R=n(—NCO)/n(—OH)=3.0时,采用原位聚合法制得的纳米SiO_2改性WPU胶粘剂的综合性能相对最佳。 With PBA (po acid) and BDO ( 1,4-butaned yester diol), IPDI (isophorone diisocyanate), DMPA (2,2-dihydroxy methyl propionic ol) as raw materials, DBTDL (dibutyltin dilaurate) as catalyst, TEA (triethylamine) as neutralizer, ethylenediamine as chain extender, and water as medium, a nano-SiO2 ( nano-silica ) modified WPU (waterborne polyurethane) adhesive was synthesized by blending or in situ polymerization. The research results showed that the nano-SiO~ can effectively improve the thermal stability of WPU film, and the properties of nano-SiO2modified WPU adhesive prepared by in situ polymerization were better than those by blending. The nano-Si02 modified WPU adhesive prepared by in situ polymerization had the relatively best combination properties when mass fractions of nano-Si02 and DMPA were 2.0% and 4.7% ratio of-NCO to -OH) was 3.0. respectively in prepolymer, and R value (namely molar
出处 《中国胶粘剂》 CAS 北大核心 2017年第11期23-27,共5页 China Adhesives
基金 山西省青年科技研究基金资助项目(2015021081) 山西省科技成果转化引导专项项目(201704D131024)
关键词 胶粘剂 纳米二氧化硅 水性聚氨酯 改性 adhesive nano-silica(nano,SiO:) waterborne polyurethane (WPU) modification
  • 相关文献

参考文献1

二级参考文献28

  • 1Lee S D, Hsiue G H, Chang P C T, et al. Plasma-induced grafted polymerization of acrylic acid and subsequent grafting of collagen onto polymer film as biomaterials[J]. Biomaterials, 1996, 17(16): 1599-1608.
  • 2Wang Y D, Ameer G A, Sheppard B J, et al. A tough biodegradable elastomer[J]. Nature Biotechnology, 2002, 20(6): 602-606.
  • 3Wang Y D, Kim Y M, Langer R. In vivo degradation characteristics of poly(glycerol sebacate)[J]. Journal of Biomedical Materials Research Part A, 2003, 66(1): 192-197.
  • 4Ifkovits J L, Padera R F, Burdick J A. Biodegradable and radically polymerized elastomers with enhanced processing capabilities . Biomedical Materials, 2008, 3(3): 034104.http://iopscience. iop. org/1748-605X/3/3/034104.
  • 5Nijst C L E, Bruggeman J P, Karp J M, et al. Synthesis and characterization of photocurable elastomers from poly (glycerol-co-sebacate)[J]. Biomacromolecules, 2007, 8(10): 3067-3073.
  • 6Yang J, Webb A R, Ameer G A. Nobel citric acid-based biodegradable elastomers for tissue engineering[J]. Advanced Materials, 2004, 16(6): 511-516.
  • 7Yang J, Webb A R, Pickerill S J, et al. Synthesis and evaluation of poly(diol citrate) biodegradable elastomers[J]. Biomaterials, 2006, 27(9): 1889-1898.
  • 8Younes H M, Bravo-Grimaldo E, Amsden B G. Synthesis, characterization and in vitro degradation of a biodegradable elastomer[J]. Biomaterials, 2004, 25(22): 5261-5269.
  • 9Amsden B, Wang S, Wyss U. Synthesis and characterization of thermoset biodegradable elastomers based on star-poly(ε-caprolactone-co-D, L-lactide)[J]. Biomacromolecules, 2004, 5(4): 1399-1404.
  • 10Amsden B G, Misra G, Gu F, et al. Synthesis and characterization of a photo-crosslinked biodegradable elastomer[J]. Biomacromolecules, 2004, 5(6): 2479-2486.

共引文献2

同被引文献111

引证文献11

二级引证文献65

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部