摘要
本文介绍了研发的基于时段降水量和土壤初始含水量的比值统计法土壤墒情诊断模型的原理和建模方法,并应用7个省23个县87个监测点2012—2014年的数据建模,应用2015年的数据进行了验证。结果表明:比值统计法诊断模型的预测精度较高,达到80%以上;比值统计法诊断和预测合格率较高的主要原因是模型参数都是数据挖掘的结果而非人为确定;逐日模型法可以实现逐日土壤墒情的预测。研究表明,比值统计法模型可以单独作为墒情诊断模型使用。
The principle and modeling method of ratio statistical diagnostic model of soil moisture based on time-period precipitation and initial soil water content were introduced. Models were es- tablished by the data of 87 monitoring sites in 23 counties in 7 provinces during 2012-2014, and validated by the data of 2015. The results showed that the ratio statistical diagnostic model had high qualification rate (〉80%) in diagnosis and prediction. The main reason for the high qualifi- cation rate of diagnosis and prediction was that the model parameters were the results of data min- ing, not determined by human. Daily time series model can predict daily soil water. The results indicated that the ratio statistical diagnostic model could be used alone as a soil moisture diagnosis model.
出处
《生态学杂志》
CAS
CSCD
北大核心
2017年第12期3359-3364,共6页
Chinese Journal of Ecology
基金
中央级公益性科研院所基本科研业务费专项资金(农业部环境保护科研监测所)资助项目(2015-szjj-zhy)
“中国农业科学院科技创新工程”项目(2016-cxgc-hyl)
广西科技开发项目(14125008-2-24)
天津市科技支撑计划项目(15ZCZDNC00700)资助
关键词
土壤含水量
降水量
时段模型
逐日模型
验证
soil water content
precipitation
time interval model
daily time series model
veri- fication.