摘要
在Hilbert中研究了一类混合逆变分不等式(简称MIVI)。MIVI分别构造了四类间隙函数,分别是自然残差函数、间隙函数、正则间隙函数、D-间隙函数。并且在强单调和Lipschitz连续的条件下分别得到了不同的误差界。证明过程主要借用了广义f-投影算子,它是近似算子的一种推广。
In this study,a mixed inverse variational inequality(MIVI) is studied in Hilbert spaces. Four merit functions for MIVI are proposed,that is,the natural residual,gap function,regularized gap function and D-gap function. And by using these functions,error bounds are obtained,i.e.,upper estimates for the distance to solutions of MIVI.The approach used in this study is based on the generalized f-projection operator,but not the proximal mapping.
出处
《钦州学院学报》
2017年第10期19-26,共8页
Journal of Qinzhou University
基金
四川省教育厅自然科学一般项目:向量值优化问题与向量变分不等式解的关系研究(14ZB0142)
关键词
混合逆变分不等式
广义f-投影算子
自然残差函数
间隙函数
误差界
Mixed inverse variational inequality
generalized f-projection operator
Natural residual
( regularized ) gap func-tions
error bounds