期刊文献+

基于压缩感知的数字全息成像

Digital holography based on compressed sensing
下载PDF
导出
摘要 对于具有高分辨力的数字全息来说,大量的数据冗余存在其中,这对后续的处理分析造成一定的负担。通过分析压缩感知技术,结合数字全息原理,利用压缩感知技术对全息图进行处理,在不损失全息图细节的情况下,减少数据量。为避免其余因素干扰,利用计算全息模拟全息图进行实验验证。对全息图进行多组压缩采样,并利用正交匹配追踪的贪婪算法进行重建。同时,利用傅里叶变换与卷积的重构方法对其进行光学全息重现,并通过归一化相关性对其进行比较。实验表明,压缩感知技术可以降低数字全息中存在的冗余,当采样50%时能较好地还原出全息图。 For high-resolution digital holography,the generated large amount of redundant data cause the burden for subsequent processing and analysis.Through analyzing the compressed sensing technology and combining the digital holographic principle,the hologram is processed without any loss of its details and the data amount is reduced.To avoid interference from other factors,the validation is conducted by using the computer generated holography to simulate the hologram.Various compressed sampling on holograms is performed,and the orthogonal matching pursuit greedy algorithm is used for reconstruction.Fourier transform and convolution reconstruction method is used to reproduce the hologram,and the results are compared with normalized correlation.The results show that compressed sensing technology can effectively reduce the digital holographic data redundancy,and the hologram can be better restored with 50% compressive sampling.
出处 《中国科技论文》 北大核心 2017年第16期1848-1853,共6页 China Sciencepaper
基金 国家自然科学基金资助项目(51074121)
关键词 光学 数字全息 压缩感知 计算全息 optics digital holography compressed sensing computer generated hologram
  • 相关文献

参考文献5

二级参考文献43

  • 1吕晓旭,张以谟,钟丽云,罗印龙,佘灿麟.相移同轴无透镜傅里叶数字全息的分析与实验[J].光学学报,2004,24(11):1511-1515. 被引量:22
  • 2范琦,赵建林,向强,徐莹,陆红强,李继锋.改善数字全息显微术分辨率的几种方法[J].光电子.激光,2005,16(2):226-230. 被引量:28
  • 3国承山,韩玉晶,郭胜利,程欣,任秀云.用空间域相减法提高电子全息图再现像的分辨率[J].光电子.激光,2005,16(5):619-623. 被引量:2
  • 4DONOHO D L. Compressed sensing[J].IEEE Transaction on Information Theory, 2006, 52(4): 1289-1306.
  • 5CANDES E, ROMBERG J, TERENCE T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information[J].IEEE Transaction on Information Theory, 2006, 52(2): 489-509.
  • 6BARANIUK R. A lecture Compressive sensing[J].IEEE Signal Processing Magazine, 2007, 24(4): 118-121.
  • 7CANDES E, TERENCE T. Near optimal signal recovery from random projections: Universal encoding strategies[J].IEEE Transaction on Information Theory, 2006, 52(12): 5406-5425.
  • 8CANDES E, ROMBERG J, TERENCE T. Stable signal recovery from incomplete and inaccurate measurements[J].Comm. Pure. Appl. Math, 2006, 59(8): 1207-1223.
  • 9HAPPUT J, NOWAK R. Signal reconstruction from noisy random projections[J].IEEE Transaction on Information Theory, 2006, 52(9): 4306-4048.
  • 10NEEDELL D, TROPP J A. CoSaMP: Iterative signal recovery from incomplete and inaccurate samples[J].Appl. Com PHarmonic Aal, 2009, 76(3): 301-321.

共引文献92

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部