期刊文献+

屈服强度失配对异种金属焊接接头裂纹扩展的影响分析 被引量:1

The effect analysis of yield strength mismatch on the crack propagation in dissimilar metal welded joint
下载PDF
导出
摘要 为了解含缺陷核电关键构件的裂纹扩展情况,以核电一回路安全端异种金属焊接接头为研究对象,建立了符合工程实际的核电焊接接头材料模型,基于XFEM分析了屈服强度失配对裂纹扩展力学场和路径的影响。结果表明:屈服强度对裂尖力学场的梯度变化影响较小;而屈服强度的高组配形式在一定范围内能够抑制裂纹的萌生,等组配形式有利于裂纹的扩展,屈服强度的增大会使裂纹启裂所需应力值增大而裂纹扩展长度减小。研究结果为异种金属焊接接头的安全性评价提供了依据。 To understand the crack propagation of key component of nuclear power,the dissimilar metal weld joint in primary circuit was chosen as the research object,and a nuclear power welded joint material model was established based on engineering practice.The effects of yield strength mismatch on the mechanical filed and path of the crack propagation were analyzed based on the XFEM in ABAQUS.Results show that the yield strength has little effect on the gradient change of the crack tip mechanical field;the yield strength overmatch can to some extent inhibit the crack initiation,while the yield strength equal match can contribute to the crack propagation.The increase of the yield strength will enhance the resistance required for crack growth and decrease the crack propagation length.The research results can provide valuable references for the safety assessment of dissimilar metal welded joints.
出处 《中国科技论文》 北大核心 2017年第16期1854-1857,1875,共5页 China Sciencepaper
基金 国家自然科学基金资助项目(51475362 11502195) 西安科技大学科研培育基金资助项目(201626) 陕西省教育厅科研计划资助项目(17JK0508)
关键词 应力腐蚀开裂 异种金属焊接接头 裂尖力学场 路径 ABAQUS stress corrosion cracking dissimilar metal welded joint mechanical field of crack tip path ABAQUS
  • 相关文献

参考文献8

二级参考文献188

  • 1沙鹏,贺定勇,田富强,李晓延,史耀武.焊接接头力学不均匀体断裂力学参量的数值分析[J].北京工业大学学报,2000,26(z1):93-98. 被引量:8
  • 2方修君,金峰.基于ABAQUS平台的扩展有限元法[J].工程力学,2007,24(7):6-10. 被引量:64
  • 3[1]Hillerborg A,Modéer M,Peterson P E.Analysis of crack propagation and crack growth in concrete by means of fracture mechanics and finite elements[J].Cem.Concr.Res.,1976,6:773~782.
  • 4[2]Ba(z)ant Z P.Crack band model for fracture of geomaterials[C].Proc.4th Int.Conf.on Numerical Methods in Geomechanics,Z.Eisenstein,ed.,Univ.of Alberta,Edmonton,1982,3:1137~1152.
  • 5[3]Jirásek M,Zimmermann T.Embedded crack model:I.basic formulation[J].International Journal for Numerical Methods in Engineering,2001,50:1269~1290.
  • 6[4]Belytschko T,Black T.Elastic crack growth in finite elements with minimal remeshing[J].Int.J.Numer.Methods Engrg.,1999,45:601~620.
  • 7[5]Moёs N,Dolbow J,Belytschko T.A finite element method for crack growth without remeshing[J].International Journal for Numerical Methods in Engineering,1999,46:131~150.
  • 8[6]Daux C,Moёs N,Dolbow J,Sukumar N,Belytschko T.Arbitrary branched and intersecting cracks with the extended finite element method[J].Int.J.Num.Methods in Eng.,2000,48:1741~1760.
  • 9[8]Alfano G,Crisfeld M A.Finite element interface models for the delamination analysis of laminated composites:mechanical and computational issues[J].International Journal for Numerical Methods in Engineering,2001,50:1701~1736.
  • 10[9]Planas J,Elices M,Guinea G V,Gómez F J,Cendón D A,Arbilla I.Generalizations and specializations of cohesive crack models[J].Engineering Fracture Mechanics,2003,70:1759~1776.

共引文献200

同被引文献12

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部