期刊文献+

Cr^(3+)掺杂锰酸锂薄膜电极的溶胶凝胶制备方法 被引量:2

Cr^(3+) doped LiMn_2O_4 thin film cathode electrodes prepared by Sol-gel method
下载PDF
导出
摘要 以锂、锰和铬的硝酸盐为原料,乙二醇为溶剂,采用Sol-gel方法在SUS304不锈钢表面制备了Cr^(3+)掺杂的锰酸锂正极薄膜。通过X射线衍射、扫描电子显微镜、循环伏安、交流阻抗及恒电流充放电测试等方法对薄膜结构及电化学性能进行了表征分析,并探索Cr^(3+)掺杂对锰酸锂循环性的影响。研究结果表明,在电压3.2~4.3V、测试电流0.1mA/cm^2的条件下,由于晶体结构的稳定性得到提高,LiCr_(0.2)Mn_(1.8)O_4薄膜表现出良好的循环稳定性,在25℃和55℃条件下600圈后其容量保持率分别为84%和83%,而在与本实验相同条件下未掺杂LiMn_2O_4(LMO)薄膜的容量保持率仅为54%和39%。通过该溶胶凝胶技术制备的薄膜电极可应用于微电子领域薄膜电池或全固态电池。 The Cr-doped lithium manganese oxide thin-film cathodes were deposited on the stainless steel(SUS304)substrate by sol-gel method using lithium nitrates,manganese nitrates and chromium nitrates as the precursors and ethylene glycol as the chelating agent for Li-ion battery.The as-synthesized film cathodes were characterized by X-ray diffraction,scanning electron microscopy,cyclic voltammetry,AC impedance and charge-discharge testing.The effect of Cr-doping on the electrochemical performance of the as-synthesized film was also studied.The results showed that LiCr_(0.2)Mn_(1.8)O_4 thin-film presented better cycle performances owing to the improvement of the stability of the crystal structure.After 600 cycles,the capacity retention ratios were 84% and 83% at 25 ℃ and 55 ℃,respectively,at the current density of 0.1 mA/cm^2 and the voltage of 3.2-4.3 V.While that of the undoped LiMn_2O_4 thin-film were only 54% and 39%,respectively,in the same condition.The thin film electrode synthesized by Sol-gel technology can be used for thin film battery or all-solid-state battery in the microelectronic field.
出处 《中国科技论文》 北大核心 2017年第16期1866-1870,共5页 China Sciencepaper
基金 国家自然科学基金资助项目(61540073) 广西自然科学基金资助项目(2016GXNSFAA380053) 广西信息材料重点实验室基金资助项目(161014-Z)
关键词 锂离子蓄电池 锰酸锂 Cr3+掺杂 SOL-GEL法 薄膜 lithium ion battery lithium manganese oxide Cr3+-doping Sol-gel method thin film
  • 相关文献

参考文献4

二级参考文献59

  • 1施志聪,杨勇.聚阴离子型锂离子电池正极材料研究进展[J].化学进展,2005,17(4):604-613. 被引量:66
  • 2曲涛,田彦文,翟玉春.采用PITT与EIS技术测定锂离子电池正极材料LiFePO_4中锂离子扩散系数[J].中国有色金属学报,2007,17(8):1255-1259. 被引量:14
  • 3Teki R, Datta M K, Krishnan R, et al. Nanostructured silicon anodes for lithium ion rechargeable batteries [J]. Small, 2009, 5(20): 2236-2242.
  • 4Demirkan M T, Trahey L, Karabacak T. Cycling per- formance o{ density modulated Multilayer Silicon thin film anodes in Li-Ion batteries [J]. Journal of Power Sources, 2015, 273(1): 52 61.
  • 5Nguyen H, Yao F, Zam{ir M, et al. Highly intercon- nected Si nanowires for improved stability Li-ion battery anodes [J]. Advanced Energy Material, 2011, 1(6) : 1154-1161.
  • 6Ge M, Rong J, Fang X, et al. Porous doped silicon nanowires for lithium ion battery anode with long cycle life [J]. Nano Letters, 2012, 12(5): 2318-2323.
  • 7Kim J S, Jung H G, Choi W, et al. Bundle-type silicon nanorod anodes produced by electroless etching using silver ions and their electrochemical characteristics in lithium ion cells [J]. International Journal of Hydrogen Energy, 2014, 39(36): 21420-21428.
  • 8Zhou Y, Jiang X, Chen L, et aI. Novel mesoporous sil- icon nanorod as an anode material for lithium ion batter- ies [J]. Electrochimica Acta, 2014, 127: 252-258.
  • 9Song T, Xia J, Lee J H, et al. Arrays of sealed silicon nanotubes as anodes {or lithium ion batteries [J]. Nano Letters, 2010, 10(5): 1710-1716.
  • 10Wen Z, Lu G, Mao S, et al. Silicon nanotube anode for lithium-ion batteries [J]. Electrochemistry Communica- tions, 2013, 29: 67-70.

共引文献43

同被引文献27

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部