摘要
科学技术的快速发展推动着高等数学与其他学科之间的交叉与渗透,它不仅是一种计算工具,同时也是一种重要的思维方式。尤其是微积分通过对变量进行近似计算和求解来实现对变量变化规律的认识而被广泛地运用到了各个学科。以分光光度法中朗伯定律公式推导、电化学分析中化学计量点确定和色谱中灵敏度的计算为例,阐述了微积分在仪器分析中的应用,使学生尽快理解微积分思想,熟练运用微积分的方法分析仪器分析问题。
The rapid development of science and technology promotes overlaps and osmosis between higher mathematics and other disciplines. It is not only a computational tool,but also an important mode of thinking. In particular,calculus has been widely applied to various disciplines through the approximate calculation to realize the changing rule of each variable. Taking the derivation of Lambert's law formula in spectrophotometry,the determination of stoichiometric point in electrochemistry analysis and the calculation of sensitivity in chromatography as examples,the application of calculus in instrumental analysis was expounded. This could inspire students to learn Instrumental Analysis,help students understand and use calculus method to analyze Instrument Analysis problem.
出处
《广州化工》
CAS
2017年第22期154-156,共3页
GuangZhou Chemical Industry
基金
吉林省教育科学"十三五"规划2016年度课题(No:GH16318)
吉林省高等教育学会高教科研课题(No:JGJX2017D195)
关键词
仪器分析
微积分
课堂教学
Instrumental Analysis
calculus
classroom teaching