期刊文献+

利用混沌激光多位量化实时产生14 Gb/s的物理随机数 被引量:4

14-Gb/s physical random numbers generated in real time by using multi-bit quantization of chaotic laser
下载PDF
导出
摘要 提出了一种基于混沌激光多位量化的高速物理随机数实时产生方法.利用外腔反馈混沌半导体激光器作为物理熵源,通过时钟速率为7 GHz的多位模数转换器对其采样量化,生成6位有效位的二进制随机比特,然后利用现场可编程软件抽取低2位有效位的随机序列并进行自延迟异或处理,获得了实时速率为14 Gb/s的物理随机数.该随机数具有良好的统计随机性,可成功通过随机数行业测试标准(NIST SP 800-22). Real-time high-speed physical random numbers are crucial for a broad spectrum of applications in cryptography, communications as well as numerical computations and simulations.Chaotic laser is promising to construct high-speed physical random numbers in real time benefitting from its complex nonlinear dynamics.However,the real-time generation rate of physical random numbers by using single-bit extraction is confronted with a bottleneck because of the bandwidth limitation caused by laser relaxation,which dominates the laser chaos and then limits the effective bandwidth only to a few GHz.Although some bandwidth-enhanced methods have been proposed to increase the single-bit generation rate, the potential is very limited,and meanwhile the defects of system complexity will be introduced. An alternative method is to construct high-speed physical random numbers by using the multi-bit extraction.In this method,each sampling point is converted to N digital bits by using multi-bit analog-to-digital converter (ADC) and their M(M 6 N) least significant bits are retained as an output of random bits,where N and M are the numbers of ADC bits and retained bits,respectively.The generation rate of random numbers is thus equal to M times sampling rate and can be greatly increased.Whereas,in the multi-bit extraction demonstrations,the intensity output of chaotic laser is usually digitized by the commercial oscilloscope and then processed with least-significant-bit retention followed by other postprocessing methods such as derivative,exclusive-OR,and bit-order reversal.These followed post-processing operations have to be implemented off-line and thus cannot support the real-time generation of random numbers.Resultantly,it is still an ongoing challenge to develop high-speed generation schemes of physical random numbers with the capability of real-time output. In this paper,a real-time high-speed generation method of physical random numbers by using multi-bit quantization of chaotic laser is proposed and demonstrated experimentally.In the proposed generation scheme,an external-cavity feedback semiconductor laser is utilized as a source of chaotic laser.Through quantizing the chaotic laser with 6-bit ADC, which is triggered by a clock at a sampling rate of 7 GHz,a binary sequence with six significant bits can be achieved. After the selection of the two least-significant bits and self-delayed exclusive-OR operation in the field-programmable gate array (FPGA),a real-time 14-Gb/s binary stream is finally achieved.This binary stream has good uniformity and independence,and has passed the industry-standard statistical test suite provided by the National Institute of Standards and Technology (NIST),showing a good statistical randomness.It is believed that this work provides an alternative method of generating the real-time high-speed random numbers and promotes its applications in the field of information security.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2017年第23期163-170,共8页 Acta Physica Sinica
基金 国家自然科学基金(批准号:61475111 61671316) 山西省优秀青年自然科学基金(批准号:2015021004) 山西省国际科技合作项目(批准号:201603D421008) 国际科技合作项目(批准号:2014DFA50870)资助的课题~~
关键词 半导体激光器 混沌激光 多位量化 物理随机数 semiconductor laser laser chaos multi-bit quantization physical random number
  • 相关文献

参考文献1

二级参考文献1

共引文献5

同被引文献11

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部