期刊文献+

基于纹理特征匹配的快速目标分割方法 被引量:6

Fast object segmentation based on texture matching
下载PDF
导出
摘要 目标分割方法是工业自动化、在线产品检验、生产过程控制等领域的关键技术之一。基于特征匹配策略,研究了如何增强纹理特征的区分能力以及如何快速分割特定的目标。在纹理特征提取方面,首先通过形态学处理获取图像细节信息,然后对细节信息进行过滤进而得到鲁棒的局部信息,最后融合局部二值模式用于增强特征的区分能力。在目标分割方面,基于纹理特征和变化分解窗口框架,根据目标窗口和待定目标窗口间的特征距离分等级的变化分解窗口的尺度,从而快速定位到目标。最后,在纹理数据集上验证了方法的有效性。 Target segmentation is widely applied to automated areas. Based on feature matching strategy,we focus on extraction of discriminative feature and fast segmentation of target. To extract more discriminative feature,we propose to fuse detailed information of image obtained from morphological processing with local binary pattern. To efficiently locate the target,we propose to change the size of decomposing widow in a rated way,according to feature distance between the target and the candidate window. Experiments demonstrate that our method achieves better performance.
作者 陈宁 杨永全
出处 《电子设计工程》 2017年第23期39-42,46,共5页 Electronic Design Engineering
基金 西安工程大学研究生创新基金(CX201622)
关键词 纹理特征提取 局部二值模式 特征融合 目标分割 texture extraction local binary pattern feature fusion object segmentation
  • 相关文献

参考文献1

二级参考文献18

  • 1练秋生,刘春亮.基于Gabor滤波器和LBP的分级掌纹识别[J].计算机工程与应用,2007,43(6):212-215. 被引量:13
  • 2Smith J R, Chang Shih-Fu.Automated binary texture feature sets for image retrieval[C]//IEEE International Conference on Acoustics, Speech, and Signal Processing, Atlanta, GA, USA, 1996:2239-2242.
  • 3Haralick R M, Shanmugam K, Dinstein I.Textural features for image classification[J].IEEE Transactions on Systems, Man, and Cybernetics, 1973,3 (6) : 610-621.
  • 4Mallat S G.A theory for multi-resolution signal decom- position: the wavelet representation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 1989, 11 (7) : 674-693.
  • 5Galloway M.Texture analysis using gray level run lengths[J]. Computer Graphics Image Processing, 1975,4 : 172-199.
  • 6Hassner M, Sklansky J.The use of markov random fields as models of texture[J].Computer Graphics and Image Processin. 1980.12 (3), 357-370.
  • 7Ojala T,Pietikainen M,Harwood D.A comparative study of texture measures with classification based on feature distributions[J].Pattern Recognition, 1996,29 : 51-59.
  • 8Iakovidis D K, Keramidas E, Maroulis D.Fuzzy local binary patterns for ultrasound texture characterization[C]// Lecture Notes in Computer Science: Image Analysis and Recognition, 2008,5112 : 750-759.
  • 9Nanni L, Brahnam S, Lumini A.A study for selecting the best performing rotation invariant patterns in local binary/ ternary patterns[C]//Image Processing, Computer Vision & Pattern Recognition, 2010 : 12-15.
  • 10Fu X, Wei W.Centralized binary pattems embedded with image euclidean distance for facial expression recogni- tion[C]//The Fourth International Conference on Natural Computation, 2008,10(4) : 115-119.

共引文献19

同被引文献64

引证文献6

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部