期刊文献+

全局稀疏梯度耦合张量扩散的图像去噪模型 被引量:3

Global sparse gradient coupled tensor diffusion model for image denoising
下载PDF
导出
摘要 针对扩散张量和时滞正则模型产生边缘模糊的问题,提出一种全局稀疏梯度耦合张量扩散的图像去噪模型.首先,该模型利用全局稀疏梯度构造张量矩阵;然后,由张量矩阵引导扩散方程去噪,使其在平滑区域为各项同性扩散以去除噪声,在非平滑区域沿切线方向扩散以保护边缘和细节.算法运用显式Euler差分格式求解提出的模型.数值实验表明,无论是客观度量还是视觉效果,文中提出的方法都能得到较好的去噪结果.实验结果说明,利用全局稀疏梯度能得到更加准确和鲁棒的引导图,从而有效提高了原有方法的去噪效果. A global sparse gradient coupled tensor diffusion model for image denoising is proposed to improve the problem of edges blurring induced by the DTTR model.First,a tensor matrix is constructed by the global sparse gradient which is more accurate and robust than classic gradient operators.Then the diffusion equation is guided by the tensor matrix for image denoising.The diffusion resulting from this model is isotropic inside a homogeneous region and anisotropic along its edge so that an accurate tracking of the edges is possible.Numerical experiments show that the proposed method achieves a competitive denoising performance in comparison with the comparative algorithms in terms of both subjective and objective qualities.Experimental results indicate that the performances of denoising methods can be improved by introducing aguide map,which is obtained by the global sparse gradient model.
出处 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2017年第6期150-155,共6页 Journal of Xidian University
基金 国家自然科学基金资助项目(61271294 61472303 61362029 61379030 61472257)
关键词 图像去噪 全局稀疏梯度 扩散方程 张量 image denoising global sparse gradient diffusion equation tensor
  • 相关文献

参考文献3

二级参考文献33

  • 1谢美华,王正明.基于边缘定向增强的各向异性扩散抑噪方法[J].电子学报,2006,34(1):59-64. 被引量:27
  • 2Han Y, Feng X C, Baciu G. Variational and PCA based natural image segmentation. Pattern Recognition, 2013, 46(7): 1971-1984.
  • 3Zhang W J, Feng X C, Han Y. A novel image segmentation model with an edge weighting function. Signal, Image, and Video Processing, 2014, 8(1): 121-132.
  • 4Buades A, Coll B, Morel J M. A non-local algorithm for image denoising. In: Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, USA: IEEE, 2005. 60-65.
  • 5Katkovnik V, Foi A, Egiazarian K, Astola J. From local kernel to nonlocal multiple-model image denoising. International Journal of Computer Vision, 2010, 86(1): 1-32.
  • 6Takeda H, Farsiu S, Milanfar P. Kernel regression for image processing and reconstruction. IEEE Transactions on Image Processing, 2007, 16(2): 349-366.
  • 7Chatterjee P, Milanfar P. A generalization of non-local means via kernel regression. In: Proceedings of the 2008 International Society for Optical Engineering. San Jose, CA: SPIE, 2008. 68140P-68140P-9.
  • 8Ram I, Elad M, Cohen I. Image denoising using non-local means via smooth patch ordering. IEEE Transactions on Image Processing, 2013, 22(7): 2764-2774.
  • 9Rajwade A, Rangarajan A, Banerjee A. Image denoising using the higher order singular value decomposition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(4): 849-862.
  • 10Wu X, Xie M Y, Wu W, Zhou J L. Non-local means image denoising using anisotropic structure tensor. Advances in Optical Technologies, 2013, 2013: Article ID 794728.

共引文献13

同被引文献8

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部