期刊文献+

硅微纳复合陷光结构的制备及在异质结太阳电池中的应用研究

Fabrication of Silicon Micro-nano Hierarchical Light-trapping Architecture and its Application for Heterojunction Solar Cells
下载PDF
导出
摘要 硅纳米线异质结太阳电池因具有良好的陷光效果及径向结收集特性而受到广泛关注.利用低浓度NaOH溶液在硅片表面腐蚀出微米尺度的金字塔结构,并采用反应离子刻蚀(RIE)的方式在其上进一步腐蚀出纳米线形貌,构建硅微纳复合陷光形貌结构.通过分析硅微纳复合陷光形貌结构的陷光机理,指导优化反应离子刻蚀工艺中的刻蚀时间,最终获得不同形貌结构的陷光衬底.通过分析其光学特性发现,在RIE时间为120 s时,硅微纳复合结构衬底反射率可小于5%,具有优异的陷光特性以及在硅异质结太阳电池中应用的巨大潜力. Silicon nanowire(SiNWs) heterojunction solar cells have attracted much attention due to its good light-trapping effects and radial-junctions. In this work,low concentration NaOH solution has been adopted to fabricate silicon micro-pyramids(SiMPs). Further,silicon nanowires have been etched on SiMPs by reactive ions etching(RIE) process to formed a SiNWs/MPs hierarchical light-trapping structure. By analyzing the mechanism of light-trapping effect and optimizing the etching-duration of the RIE process,the substrates with different morphologies have been achieved. It could be observed that the SiNWs/MPs hierarchical lighttrapping structure could obtain reflectance of 5% when the RIE-duration was 120 s. Also,the excellent lighttrapping effects indicate it has magnificent potential for silicon heterojunction solar cells applications.
出处 《吉林师范大学学报(自然科学版)》 2017年第4期53-58,共6页 Journal of Jilin Normal University:Natural Science Edition
基金 国家自然科学基金项目(61475063,61505067,21576111) 教育部新世纪优秀人才支持计划(NCET-13-0824)
关键词 太阳电池 纳米线 陷光结构 反应离子刻蚀 solar cells nanowires light-trapping structure metal assisted chemical etching
  • 相关文献

参考文献3

二级参考文献67

  • 1Duan, X. F.; Huang, Y.; Cui, Y.; Wang, J. F.; Lieber, C. M. Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature 2001, 409, 669.
  • 2Kelzenberg, M. D.; Boettcher, S. W.; Petykiewicz, J. A.; Turner-Evans, D. B.; Pumam, M. C.; Warren, E. L.; Spurgeon, J. M.; Briggs, R. M.; Lewis, N. S.; Atwater, H. A Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications. Nat. Mater. 2010, 9, 239-244.
  • 3Polman, A.; Atwater, H. A. Photonic design principles for ultrahigh-efficiency photovoltaics. Nat. Mater. 2012, 11, 174-177.
  • 4Czaban, J. A.; Thompson, D. A.; LaPierre, R. R. GaAs core-shell nanowires for photovoltaic applications. Nano Lett. 2009, 9, 148-154.
  • 5Cui, Y. C.; Wang, J.; Plissard, S. R.; Cavalli, A.; Vu, T. T. T.; van Veldhoven, R. P. J.; Gao, L.; Trainor, M.; Verheijen, M. A.; Haverkort, J. E. M. et al. Efficiency enhancement of InP nanowire solar cells by surface cleaning. Nano Lett. 2013, 13, 4113-4117.
  • 6Wallentin, J.; Anttu, N.; Asoli, D.; Huffman, M.; Aberg, I.; Magnusson, M. H.; Siefer, G.; Fuss-Kailuweit, P.; Dimroth, F.; Witzigmann, B. et al. InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit. Science 2013, 339, 1057-1060.
  • 7Krogstrup, P.; Jorgensen, H. I.; Heiss, M.; Demichel, O.; Holm, J. V.; Aagesen, M.; Nygard, J.; Fontcuberta i Morral, A. Single-nanowire solar cells beyond the Shockley-Queisser limit. Nat. Photonics 2013, 7, 306-310.
  • 8Yu, L. W.; Misra, S.; Wang, J. Z.; Qian, S. Y.; Foldyna, M.; Xu, J.; Shi, Y.; Johnson, E.; Roca i Cabarrocas, P. Understanding light harvesting in radial junction amorphous silicon thin film solar cells. Sci. Rep. 2014, 4, 4357.
  • 9Fern/mdez-Serra, M. V.; Adessi, C.; Blase, X. Conductance, surface traps, and passivation in doped silicon nanowires. Nano Lett. 2006, 6, 2674-2678.
  • 10Dan, Y. P.; Seo, K.; Takei, K.; Meza, J. H.; Javey, A.; Crozier, K. B. Dramatic reduction of surface recombination by in situ surface passivation of silicon nanowires. Nano Lett. 2011, 11, 2527-2532.

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部