期刊文献+

认知雷达目标跟踪时的波形优化选择方法 被引量:1

Waveform selection method for cognitive radar target tracking
下载PDF
导出
摘要 基于认知雷达波形捷变的思想,以提高雷达跟踪精度为目的,提出了一种基于自适应Kalman滤波的PSO优化算法的认知雷达的波形选择方法。通过发射波形与测量噪声之间的关系,建立了发射波形与雷达跟踪性能之间的关系模型,利用粒子群算法优化雷达发射波形参数,在卡尔曼跟踪滤波算法中增加了波形选择模块,实现对发射波形的自适应选择,以获取更好的目标跟踪性能。仿真结果表明,该方法使雷达对目标的跟踪性能在速度误差和距离误差分别降低50%和60%。 This paper based on the idea of cognitive radar waveform agility,proposes a new method of PSO optimization algorithm based on adaptive Kalman filtering. The relationship between the transmitted waveform and measurement noise and the relationship model was established between the transmitted waveform and tracking performance,using particle swarm algorithm to optimize the radar waveform parameters,in the framework of kalman tracking filtering algorithm increases the waveform selection module,to achieve the adaptive regulation of waveform tracking,to obtain better tracking performance.Simulation results show that the proposed method can significantly improve the tracking performance of radar.
出处 《电子设计工程》 2017年第24期46-49,共4页 Electronic Design Engineering
关键词 波形选择 粒子群优化 卡尔曼滤波 认知雷达 waveform selection particle swarm optimization Kalman filter cognitive radar
  • 相关文献

参考文献8

二级参考文献102

  • 1李凌鹏,孙文.有限状态机在防空作战仿真中的应用[J].电光与控制,2005,12(5):76-78. 被引量:4
  • 2周新蕾,刘正高.航天软件可靠性安全性技术应用发展趋势[J].质量与可靠性,2006(3):41-43. 被引量:4
  • 3吴亮红,王耀南,袁小芳,周少武.自适应二次变异差分进化算法[J].控制与决策,2006,21(8):898-902. 被引量:80
  • 4韩占忠,王敬,兰小平.FLUENT流体工程仿真计算实例与应用[M].北京:北京理工大学出版社,2007.
  • 5Capraro C T, Bradaric I. Using genetic algorithms for radar waveform selection[C]//IEEE Radar Conference, 2008 : 1 - 6.
  • 6Altes R A, Titlelaum E L. Bat signals as optimally Doppler tol erant waveforms[J]. Journal Acoustics Society of America, 1970,48(4B) :1014 - 1020.
  • 7Holderied M W, Baker C J. Understanding signal design during the pursuit of aerial insects by echolocating bats: tools and applications [J]. Integrative Comparitive Biology, 2008, 48 (1):74-84.
  • 8Vespe M, Jones G. Lessons for radar[J]. IEEE Signal Pro eessing Magazine,2009,26(1) :65 - 75.
  • 9Amuso V, Blunt S. Applications and methods of waueform diversity[M]. Raleigh, NC: SciTech Publishing, 2009.
  • 10Drozd A. Waveform diversity and design[J]. IEEEAerospace and Electronic Systems Magazine, 2006 ( 210) : 46.

共引文献47

同被引文献4

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部