摘要
采用废弃生物质油茶籽壳为碳源,对比不同的Fe_3O_4@C微球修饰方法,以水热法制备了分散性良好,碳层厚度均匀的核壳结构Fe_3O_4@C磁性微球,并使用透射电镜(TEM)、红外光谱(FT-IR)及X射线衍射(XRD)对其进行了表征,研究了该磁性微球对水体中持久性有机污染物PFOS的吸附性能。Fe_3O_4@C磁性微球吸附PFOS仅需约1 h即可达吸附平衡,其吸附动力学更符合拟一级动力学模型(R^2>0.95);Langmuir吸附模型能较好地拟合其等温吸附数据(R^2>0.98),表明Fe_3O_4@C磁性微球对PFOS的吸附为化学吸附占主体作用,倾向于单层吸附,对PFOS的吸附容量为11.61 mg/g。该吸附剂具有良好的磁性能及吸附性能,对水体中PFOS吸附迅速且易于回收,为废弃生物质的高值开发提供了一种可能路径。
A novel biomass based core-shell structure magnetic carbon microspheres( Fe3O4@C) were prepared by hydrothermal form wasted Camellia oleifera shell,and the preparation process was optimized by using different modification of Fe3O4 spheres,which led to a better dispersiveness and more uniform carbon layer. The magnetic carbon microspheres were characterized by transmission electron microscope(TEM), fourier transform infrared spectroscopy( FTIR) and X-ray diffraction( XRD). The adsorption properties and adsorption mechanism of PFOS onto the magnetic carbon microspheres in aqueous solution were explored. The results of kinetics sorption showed that the adsorption of PFOS onto Fe3O4@C microspheres fit pseudo-first-order model well and the equilibrium time was about merely 1 h. The adsorption isotherms followed Langmuir model well( R^2 〉0. 98),and the maximum adsorption capacity was 11. 61 mg/g,indicating that the chemical adsorption possess predominated the status in the sorption process,and the adsorption behavior of PFOS onto Fe3O4@C tended to monolayer sorption. The Fe3O4@C microspheres in this work possessed excellent magnetic and adsorption properties,so they removed PFOS rapidly and conveniently to recycle. This work provided a possibility of the high value development of wasted biomass.
出处
《环境工程》
CAS
CSCD
北大核心
2017年第11期114-119,共6页
Environmental Engineering
基金
国家自然科学基金项目(21366024
21665018
21165013)
江西省自然科学基金(20151BAB213002)
南昌航空大学研究生创新专项资金项目(YC2015014)