期刊文献+

基于OpenFlow的SDN网络环境下DDoS攻击检测系统 被引量:2

DDoS attack detection system based on OpenFlow in SDN network environment
下载PDF
导出
摘要 为了在软件定义网络(SDN)环境中有效解决分布式拒绝服务攻击(DDoS)的问题,提出了一种主被动结合、统计流表特征的DDoS攻击检测方法.利用SDN网络架构在部署DDoS攻击检测系统方面灵活和多维度的特点,通过控制器从大量的网络设备中早期发现受害主机,并有针对性的进行攻击检测.首先通过packet_in消息被动统计作为预判,进而下发监控流表进一步细粒度统计特征,并利用XGBoost算法构造异常检测分类器进行分类攻击.最后在OpenDayLight控制器中实现了上述DDoS攻击检测系统,并在Mininet网络中进行了评估验证.结果表明,这种检测方法可以高效定位出遭受DDoS攻击的网络设备并检测出受害主机,XGBoost算法应用在此场景中可以在保证检测率的同时发挥其处理效率高的特性,适用于此系统. To solve the problem of distributed denial of service( DDoS) in software-defined network( SDN) environment,a DDoS attack detection method with active passive combination and statistical flow features is presented. Utilizing the flexible and multi-dimensional features of SDN network architecture in deploying DDoS attack detection system,the victim host is detected from a large number of network devices earlier through controller and the targeted attack detection is conducted. First,the traffic statistics of the packet_in message is used as the pre-judgment. Then the fine-grained statistical features are further distributed,and the XGBoost algorithm is used to construct the anomaly detection classifier to classify the attacks. Finally,the DDoS attack detection system is implemented in the OpenDayLight controller and evaluated in the Mininet network. The results show that the method can efficiently locate the network equipment suffered DDoS attacks and detect the victim host. XGBoost algorithm applied to the scene has characteristics of high efficiency processing and guarantee the detection rate at the same time,thus it is suitable for the system.
出处 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2017年第A01期14-19,共6页 Journal of Southeast University:Natural Science Edition
基金 国家高技术研究发展计划(863计划)资助项目(2015AA016105) 教育部-中国移动科研基金资助项目(MCM20160304)
关键词 软件定义网络 分布式拒绝服务攻击 攻击检测 网络入侵 software definition network(SDN) distributed denial of service attack detection network intrusion
  • 相关文献

参考文献3

二级参考文献15

  • 1Zander S,Nguyen T,Armitage G.Automated Traffic Classification and Application Identification Using Machine Learning[C]//Proceedings of CLCN’05.Washington D.C.,USA:IEEE Computer Society Press,2005:250-257.
  • 2Liu Yun,Cheng Jieren,Yin Jianping,et al.Anomaly Detection for DDo S Attacks via Behavior Profiles Deviation Degree[C]//Proceedings of the 3rd International Conference on Computer Design and Applications.Washington D.C.,USA:IEEE Press,2011:13278-13282.
  • 3Phillip P,Seungwon S,Vinod Y,et al.A Security Enforcement Kernel for Open Flow Networks[C]//Proceedings of the 1st Workshop on Hot Topics in Software Defined Networks.New York,USA:ACM Press,2012:121-126.
  • 4Mc Keown N,Anderson T,Balakrishnan H.Open Flow:Enabling Innovation in Campus Networks[J].ACM SIGCOMM Computer Communication Review,2008,38(2):69-74.
  • 5Charfi Y,Wakamiya N,Murata M.Future Mobile Network Management with Attractor Selection[C]//Proceedings of the 9th Annual Conference on Wireless On-demand Network Systems and Services.Washington D.C.,USA:IEEE Press,2012:27-30.
  • 6Dan P.Trust in the Cloud:The Role of SDN[J].Network Security,2013,(3):5-6.
  • 7Braga R,Mota E,Passito A.Lightweight DDo S Flooding Attack Detection Using NOX/Open Flow[C]//Proceedings of the 35th Conference on Local Computer Networks.Washington D.C.,USA:IEEE Press,2010:408-415.
  • 8Mehdi S A,Khalid J,Khayam S A.Revisiting Traffic Anomaly Detection Using Software Defined Networking[C]//Proceedings of the 14th International Conference on Recent Advances in Intrusion Detection.Berlin,Germany:Springer,2011:161-180.
  • 9Giotis K,Argyropoulos C,Androulidakis G,et al.Combining Open Flow and s Flow for an Effective and Scalable Anomaly Detection And Mitigation Mechanism on SDN Environments[J].Computer Networks,2014,62(4):122-136.
  • 10杨雅辉,姜电波,沈晴霓,夏敏.基于改进的GHSOM的入侵检测研究[J].通信学报,2011,32(1):121-126. 被引量:24

共引文献35

同被引文献7

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部