期刊文献+

基于k-means和决策树的混合入侵检测算法 被引量:4

Mixed Intrusion Detection Algorithm Based on k-means and Decision Tree
下载PDF
导出
摘要 随着网络复杂度的增加,传统的入侵检测方法已经无法满足日益增长的安全需求。采用大数据的挖掘算法提高入侵检测的检测率是当前研究的热点。为此,本文提出一种基于k-means和决策树算法的混合入侵检测算法(KDI)。该算法首先对数据预处理的离散化方法进行改进,获取高质量样本数据,并根据现实中易出现类别信息增益比差异小的特点,利用k-means算法根据增益比差异将样本数据先分类再建立决策树,提升了算法的检测率。实验结果表明KDI算法能够有效地检测网络数据中隐含的已知和未知的入侵行为。 With the growth of the network complexity,the traditional intrusion detection methods have been unable to meet thehigh-level security requirements. How to use data mining algorithm to improve accuracy rate of intrusion detection is a hot spot incurrent research. For H s purpose, a hybrid intrusion detection algorithmbased on k-means and decision trproposed. Firstly, an improvement on data discretization method is advanced,in order to othen the k-mean algoritlim is utilized to classify the sample data based on the feature vergence ratio in many real situations, subsequently, the decision trees is constructed, therefore, the deteThe experimental results show that the KDI algorithm can effectively detect both known and unknownetwork data.
作者 李鹏 周文欢
出处 《计算机与现代化》 2017年第12期12-16,共5页 Computer and Modernization
关键词 K-MEANS 决策树 入侵检测 数据离散化 k-means decision tree intrusion detection data discretization
  • 相关文献

参考文献12

二级参考文献140

  • 1甘早斌,何建国.入侵检测系统的多层次模糊综合评价研究[J].计算机应用研究,2006,23(4):90-93. 被引量:4
  • 2孙凯,鞠晓峰,李煜华.基于变异系数法的企业孵化器运行绩效评价[J].哈尔滨理工大学学报,2007,12(3):165-167. 被引量:60
  • 3KURGAN LA, CIOS KJ. CAIM discretization algorithm[J]. IEEE Transactions on Knowledge and Data Engeering, 2004, 16(2): 145- 153.
  • 4USAMA FM, KEKI IB. Multi-interval discretization of continuous-valued attributes for classification learning[A]. Proceedings of the 13th International Joint Conference on Artificial Intelligence[C]. San Mateo, CA: Morgan Kaufmann, 1993, 2.1022-1027.
  • 5HONG SJ. Use of contextual information for feature ranking and discretization[J]. IEEE Transactions on Knowledge and Data Engeering, 1997, 9(5): 718-730.
  • 6COVER TM, THOMAS JA. Elements of information theory[M]. New York: John Wiley & Sons, 1991.
  • 7CLARKE EJ, BARTON BA. Entropy and MDL discretization of continuous variables for Bayesian belief networks[J]. International Journal of Intelligence Systems, 2000, 15(1): 61-92.
  • 8ISHIBUCHI H, YAMAMOTO T. Deriving fuzzy discretization from interval discretization[A]. The IEEE International Conference on Fuzzy Systems[C], 2003. 749-754.
  • 9BLAKE CL, MERZ CJ. UCI repository of machine learning databases[DB/OL]. http://www.ics.uci.edu/ ~mlearn/MLRepository.html,1998.
  • 10Liu Meilan,Information and Communication Security CCICS’99.First Chinese Conference Inform,2000年,105页

共引文献675

同被引文献20

引证文献4

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部