期刊文献+

基于自动聚类和自回归模型的时间序列预测 被引量:3

Time Series Forecasting based on Automatic Clustering and Autoregressive Model
下载PDF
导出
摘要 针对股指时间序列,本文提出基于自动聚类和自回归的时间序列预测模型,将自动聚类算法与经典的时间序列模型合并.利用自动聚类算法将论域进行划分,得到相应的划分区间;再利用自回归模型确定预测数据的波动量;最后结合趋势和波动量得到最后的预测值.实验结果表明,提出的模型具有较好预测效果,在预测1992年台湾股指时间序列上,优于同类预测模型. In this paper,a time series forecasting model based on automatic clustering and autoregressive model is proposed. The model fully capitalizes on the two key technologies,automatic clustering and autoregressive model,to deal with the stock price forecasting. The automatic clustering algorithm is applied to cluster the historical stock data into intervals of different lengths.Then,an autoregressive model is utilized to determine the fluctuation quantity of the forecasted data. Finally,the forecasted stock price is obtained by integrating trend prediction with fluctuation quantity. Stock price time series is employed to compare the forecasting accuracy between the proposed model and the existing methods. The experimental results indicate that the proposed model produces better forecasting performance.
出处 《吉林化工学院学报》 CAS 2017年第11期86-89,共4页 Journal of Jilin Institute of Chemical Technology
关键词 自动聚类 自回归模型 时间序列预测 股指预测 automatic clustering autoregressive model time series analyse stock price forecasting
  • 相关文献

参考文献2

二级参考文献12

  • 1Chen S.-M. , Kao P.-Y.. TAIEX forecasting based on fuzzy time series, particle swarm optimization tech- niques and support vector machines [ J ]. information Sciences, 2013,247 : 62-71.
  • 2Pai P.-F. , Lin C.-S.. A hybrid ARIMA and support vector machines model in stock price forecasting [ J ]. Omega, 2005,33 ( 6 ) :497-505.
  • 3Catalano R. , Hansen H.-T.. Using time-series analy- ses to detect the health effects of medical care reforms : a Norwegian example[ J ]. Social Science & Medicine, 2001,53 (8) : 1037-1043.
  • 4Aach J. , Church G.. Aligning gene expression time se- ries with time warping algorithms [ J ]. Bioinfor-matics,2001,17:495-508.
  • 5Song Q. , Chissom B. S.. Fuzzy time series and its models[ J]. Fuzzy Sets Syst. , 1993,54:269-277.
  • 6Song Q. , Chissom B. S.. Forecasting enrollments with fuzzy time series-Part I [ J ]. Fuzzy Sets Syst. , 1993, 54 : 1-10.
  • 7Song Q. , Chissom B. S.. Forecasting enrollments with fuzzy time series-Part II [ J ]. Fuzzy Sets Syst. , 1993, 52 : 1-8.
  • 8Yolcu U. , Aladag C. H.. Egrioglu E. , et al. Time se- ries forecasting with a novel fuzzy time series ap- proach:an example for Istanbul stock market [ J ]. J. Star. Comput. Simul. ,2013,83 (4) :597-610.
  • 9Yu T. H. K. , Huarng K. H.. A bivariate fuzzy time se- ries model to forecast the TAIEX[ J ]. Expert Syst. Ap- pl. ,2008,34 : 2945-2952.
  • 10Lee L. W. , Wang L. H. , Chen S. M.. Temperature pre- diction and TAIFEX forecasting based on high-order fuzzy logical relationships and genetic simulated annea- ling techniques [ J ]. Expert Syst. Appl., 2008, 34:328-336.

共引文献7

同被引文献14

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部