期刊文献+

基于蚁群算法的边缘检测 被引量:4

Edge Detection Based on Ant Colony Algorithm
下载PDF
导出
摘要 蚁群算法是近些年发展起来的一种群体智能优化算法,它利用生物信息激素作为蚂蚁选择后续行为的依据,并通过蚂蚁间的协同与交互来完成全局寻优搜索过程。本文将该算法用于边缘检测,建立图像边缘与信息场之间的联系。提出了基于像素邻域的8个启发信息检测算子,指导蚂蚁选择最优边缘路径,并能自动确定分割阈值。对灰度图像进行模拟实验与经典分割算子进行对比,结果表明,该算法可以精确提取边缘特征,细节特征更为清晰。 Ant colony algorithm is a popular swarm intelligence optimization algorithm in recent years , which discharge biological pheromone as a basis for guiding the ant subsequent behaviors and searching the optimal solution in the searching regions through the cooperation and interaction with other ants .In this paper , the present algorithm would contact the edge with the pheromone field for edge detection .We proposed a method of eight heuristic information detector based on pixel neighborhood to guide ants select the opti -mal edge of on the path , so that the segmentation threshold can be automatically determine .Compared with classical edge -measuring operator , the image simulation experiments show that the proposed can accurately extract edge profile and the clearly detail characteris -tics.
作者 刘猛猛 马超
出处 《测绘与空间地理信息》 2017年第11期171-173,共3页 Geomatics & Spatial Information Technology
关键词 蚁群优化算法 边缘检测 CANNY算子 ant colony optimization edge detection Canny detector
  • 相关文献

参考文献3

二级参考文献8

  • 1鲍立威,何敏,沈平.关于BP模型的缺陷的讨论[J].模式识别与人工智能,1995,8(1):1-5. 被引量:43
  • 2章毓晋.图像分割[M].北京:科学出版社,2001.34.
  • 3张晓明 蒋大真 卢宋林.一个启发式的图像边缘检测算法[J].核技术,1996,19(1):23-25.
  • 4Pham D T, Bayro-Corrochano E J.Neural computering for noise iltering,edge detection and signature extraction[J].System Engineering,1992,(2):111-122.
  • 5Spreeuwers L J, A neural network edge detector[J].Nonlinear image processing II,1991,1451:204-215.
  • 6Srinivasan V, Bhatia P, S H.Ong Edge detection using a neural network,Pattern recognition,1994,27(12):1 653-1 662.
  • 7张立明.人工神经网络模型及其应用[M].上海:复旦大学出版社,1992..
  • 8Pratt W K. Digital Image Processing[M]. New York: Wiley,1991.

共引文献429

同被引文献56

引证文献4

二级引证文献85

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部