期刊文献+

非齐次Schrdinger方程的整体解与爆破解

Global Existence and Blow-up for Inhomogeneous Schrdinger Equation
下载PDF
导出
摘要 研究如下非齐次Schrdinger方程itΦ=-ΔΦ-|x|-b|Φ|p-1Φx∈R^n,t≥0,0<b<2,n≥3当1<p<1+4-2b/n或者p=1+4-2b/n且初始质量充分小时,得到其Cauchy问题在H1(Rn)中整体适定;当1+4-2b/n≤p<1+4-2b/n-2时,得到其Cauchy问题的解在有限时间爆破的充分条件. The aim of this paper is to study the cauchy problem of the following inhomogeneous Schrdinger equation itΦ =-ΔΦ-|x|-b|Φ|p-1Φ x ∈ R^n,t≥0,0b2,n≥3 When 1p1+4-2b/n,the global well-posedness in H^1(R^n)has been established;when p=1+4-2b/n,a mass critical is derived for the global well-posedness in H^1(R^n);when 1+4-2b/n≤p1+4-2b/n-2,we have obtained the finite-time blow-up of solution under certain conditions.
出处 《西南师范大学学报(自然科学版)》 CAS 北大核心 2017年第11期15-20,共6页 Journal of Southwest China Normal University(Natural Science Edition)
基金 国家自然科学基金项目(11371267) 四川省杰出青年基金项目(2012JQ0011)
关键词 非齐次Schrdinger方程 整体解 爆破解 Inhomogeneous Schrodinger Eq u a t io n global existence b low -u p
  • 相关文献

参考文献1

二级参考文献11

  • 1李晓光,张健,陈光淦.带调和势的非线性Schrdinger方程爆破解的L^2集中性质[J].数学年刊(A辑),2005,26(1):31-38. 被引量:7
  • 2Ginibre J, Velo G. On a class of nonlinear Schrtodinger equations: The Cauchy problem general case[ J]. J Func Anal, 1979,32: 1-71.
  • 3Kato T. On nonlinear Sehrodinger equations [ J ]. Ann Inst Henri Poineare Theorique Physique Theorique, 1987,49 : 113-129.
  • 4Cazenave T. An Introduction to Nonlinear Schrodinger Equation[ M]. Rio de Janeiro:Textos de Metodos Matematicos, 1989.
  • 5Zhang Jian. Sharp conditions of global existence for nonlinear Schrodinger and Klein-Gordon equation [ J ]. Nonlinear Analysis TMA, 2002,48 : 191-207.
  • 6Merle F. Nonexistence of minimal blow-up solutions of iu1 = -△u- k(x) |u|^4/N u equations in R^A[J]. Ann Inst Henri Poincare Theorique Physique, 1996,64:33-85.
  • 7Weistein M I. Nonlinear Schrodinger equations and sharp interpolation estimates [ J]. Commun Math Phys, 1983,87:567-576.
  • 8Merle F, Tsutsumi Y. L^2 concentration of blow-up solutions for the nonlinear Schrodinger equation with critical power nonlinearity [ J]. J Diff Eqs, 1990,84:205-214.
  • 9Strauss W A. Existence of solitary waves in higher dimensions[ J]. Cornrnun Math Phys,1977,55:149-162.
  • 10Kavian T. A remark on the blowing-up of solutions to the Cauehy problem for nonlinear Sehrodinger equations [ J ]. Trans Am Math Soe, 1987,299 : 193-203.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部