期刊文献+

V_8与P_n的笛卡尔积的交叉数

The Crossing Number of V_8× P_n
下载PDF
导出
摘要 V8是由一个圈C_8=v_1v_2v_3v_4v_5v_6v_7v_8v_1添加边v_1v_5,v_2v_6,v_3v_7,v_4v_8所得到的图,它是一个重要的3正则图.两个图的笛卡尔积的交叉数问题受到广泛的关注.运用数学归纳法证明了图V8与路Pn的笛卡尔积的交叉数是9n-1,其中n≥1. V8 is a graph consisting of a cycle C8= v1 v2 v3 v4 v5 v6 v7 v8 v1 and the edges v1 v5, v2 v6, v3 v7, v4 v8, which is an important 3-regular graph. The problem of the crossing number of the Cartesian product of two graphs has attracted immense academic attention. The analysis showed the crossing number of the Cartesian product of a path Pnand V8 is9 n-1 for n≥1.
机构地区 南通大学理学院
出处 《南通大学学报(自然科学版)》 CAS 2017年第3期79-85,共7页 Journal of Nantong University(Natural Science Edition) 
基金 国家自然科学基金项目(11171114)
关键词 V8 交叉数 笛卡尔积 V8 crossing number Cartesian product path
  • 相关文献

参考文献6

二级参考文献60

  • 1周智勇,肖文兵,黄元秋.星图S_5及5个六阶图与路的笛卡儿积图的交叉数[J].湖南文理学院学报(自然科学版),2007,19(1):1-4. 被引量:5
  • 2Ho P T. The crossing number of K1,m,n[J].Discrete Mathematics, 2008(308) : 5 996-6 002.
  • 3Zheng Wengping, Lin Xiaohui, Yang Yuansheng, et al. On the crossing numbers of Km × Cn and Km,1 × Pn[J]. Discrete Applied Mathematics, 2008, 156(10): 1 892-1 907.
  • 4Bondy J A, Murty M S R. Graph theory with application[M]. New York: American Elsevier, 1976.
  • 5Turan P. A note of welcome[J].J Graph Theory, 1977(1) : 7-9.
  • 6Garey M R, Johnson D S. Crossing number is NP-complete[J]. SIAM J Algebraic Diserete Methods, 1983(4): 312-316.
  • 7Klesc M. On the crossing number of cartesian products of stars and paths or cycles[J]. Math Slovaca, 1991(41): 113-120.
  • 8Klesc M. The crossing number of paths and stars with 4-vertex graph[J]. J Graph Theory, 1994 ( 18 ) : 605-614.
  • 9Klesc M. The crossing number of certain cartesian products[J]. Math-Graph Theory, 1995(15) : 5- 10.
  • 10Klesc M. The crossing number of cartesian products of paths with 5-vertex graphs[J]. Diserete Math, 2001 (233) : 353-359.

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部