摘要
在齐次Neumann条件下研究一类具有能量维持扩散的恒化器模型的稳定性.首先利用最大值原理和Harnack不等式给出平衡态方程正解的先验估计;其次利用谱分析和特征值理论证明正常数平衡解的一致渐近稳定性;最后借助构造Lyapunov函数来证明正常数平衡解的全局渐近稳定性.
A diffusive chemostat model with maintenance energy is considered under homogeneous Neumann boundary condition.Firstly,by using the maximum principle and Harnack inequality,the estimates of the upper and positive lower bound of nonconstant positive steadystate solution is obtained.Secondly,the uniformly asymptotically stability of positive constant equilibrium is proved by using eigenvalue theory and the theory of spectral analysis.Finally,by constructing the Lyapunov function,the global asymptotic stability of the positive equilibrium is proved.
出处
《纺织高校基础科学学报》
CAS
2017年第3期331-338,共8页
Basic Sciences Journal of Textile Universities
基金
国家自然科学基金资助项目(61672021)