期刊文献+

地震数据去噪的研究与分析 被引量:1

Research and Analysis of Seismic Data Denoising
下载PDF
导出
摘要 小波分解利用信号和噪声在时频域内小波系数差异,重构信号从而去除噪声;SVD算法利用信号和噪声奇异值的差异,选取合适的空间维数重构信号从而去除噪声。通过模型验证对比了两种算法的去噪效果和优缺点,发现小波算法对水平同相轴和倾斜同相轴具有相同的去噪效果,但运算时间较长;SVD算法对水平同相轴去噪效果很好,对于倾斜同相轴几乎不能去噪,但运算时间较短。 The wavelet decomposition uses the difference of signal and noise in the time-frequency domain wavelet coeficient,then reconstructs the signal wiping off noise; SVD algorithm uses the difference of the signal and noise singular value, selecting the appropriate dimensions to reconstruct the signal wiping off noise. Through the comparison of two kinds of model validation algorithm for denoising effect, we know that wavelet algorithm for level phase axis and dip phase axis has the same denoising effect, but the operation time is long. The SVD algorithm for level event denoising effect is very good and the operation time is short,but it does not fit for dip event axis denoising.
机构地区 淮北师范大学
出处 《廊坊师范学院学报(自然科学版)》 2017年第4期33-35,42,共4页 Journal of Langfang Normal University(Natural Science Edition)
基金 安徽省高等学校自然科学研究项目(KJ2017B008) 淮北师范大学质量工程项目(jy2016133)
关键词 小波分解 SVD算法 水平同相轴 倾斜同相轴 wavelet decomposition SVD algorithm horizontal event dip event
  • 相关文献

参考文献9

二级参考文献103

共引文献87

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部