期刊文献+

安卓恶意软件的计算机免疫检测模型 被引量:2

THE ANDROID MALWARE DETECTION MODEL BASED ON COMPUTER IMMUNE
下载PDF
导出
摘要 安卓系统因其开放性的特点导致恶意软件泛滥,现有方法多考虑静态或动态单方面特征,判别算法多依赖于学习样本,且准确率有一定的限制。为解决上述问题,提出结合安卓软件的静态权限特征与动态行为特征的计算机免疫恶意软件检测模型。结合静态权限特征与动态行为特征,构建安卓软件的特征体系,经预处理后映射为树突状细胞算法DCA(Dendritic Cell Algorithm)的各类信号,使用无需样本学习的轻量级算法DCA进行恶意软件检测。实验证明该模型可以有效检测恶意软件。 Android malware flooding is based on the characteristics of its openness, existing solutions are based on static or dynamic unilateral features, discriminant algorithm depends more on learning samples, and the accuracy rate has some restrictions. In order to solve these problems, this paper proposed a computer immune malware detection model which combines the static privilege characteristics and dynamic behavior characteristics of Android software. Combining the characteristics of static privilege and dynamic behavior, the characteristic system of Android software was constructed. After pretreatment, it was mapped to DCA. The software was detected by using the lightweight algorithm DCA without sample learning. The experiment proved that the model could effectively detect malicious software.
出处 《计算机应用与软件》 2017年第12期307-312,共6页 Computer Applications and Software
关键词 安卓恶意软件 静态特征 动态特征 DCA Android malware Permissions characteristic Dynamic behavior characteristics Dendritic cell algorithm
  • 相关文献

参考文献6

二级参考文献118

  • 1Mariantonietta La Polla, Febio Martinelli, Daniele Sgandurra. A survey on security for mobile devices [J]. IEEE Communications Surveys & Tutorials, 2013, 15 (1): 446-471.
  • 2Thomas Blosing, Leonid Batyuk, Aubrey Derrick Schmidt, et al. An Android application sandbox system for suspicious soft- ware detection [C]//Proceedings of the 5th International Conference on Malicious and Unwanted Software. USA: IEEE Computer Society Press, 2010: 55-62.
  • 3Asaf Shabtai, Robert Moskovitch, Yuval Elovici, et al. Detection of malicious code by applying machine learning classifiers on static features: A state-of-the-art survey [J]. Information Security TechnicalReport, 2009, 14 (1): 16-29.
  • 4Asaf Shabtai, Yuval Fledeh Uri Kanonov, et al. Google Android: A comprehensive security assessment [J]. IEEE Security and Privacy, 2010, 8 (2): 35-44.
  • 5Adrienne Porter Felt, Matthew Finifter, Erika Chin, et al. A survey of mobile malware in the wild [C]//Proceedings of the 1 st ACM Workshop on Security and Privacy in Smartphones and Mobile Devices. New York: ACM Press, 2011: 3-14.
  • 6Zheng Min, Patti& P C Lee, John C S Lui. ADAM: An automarie and extensible platform to stress test android anti-virus systems [C] //Proceefflngs of the 9th International Conference on Detection of Imrusions and Malware and Vulnerability Assessment. Berlin Heidelberg.. Springer-Verlag, 2012: 82-101.
  • 7Zhou Yajin, Jiang Xuxian. Dissecting Android malware: Chara-cterization and evolution [C] //Proceedings of the IEEE Symposium on Security and Privacy. USA: IEEE Computer Society Press, 2012: 95-109.
  • 8Zhou Wu, Zhou Yajin, Jiang Xuxian, et al. Detecting repae- kaged srnartphone applications in third-party Android market- places [C] //Proceedings of the Second ACM Conference on Data and Application Security and Privacy. New York: ACM Press, 2012: 317-326.
  • 9Mutz D, Valeur F, Vigna G. Anomalous system call detection [J]. ACM Transactions on Information and System Security, 2006, 9 (1): 61-93.
  • 10Google Android [EB/OL]. [2013-03-25]. http: //www. an-droid. com.

共引文献165

同被引文献8

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部