期刊文献+

基于投影与深度学习网络的三维人脸特征点定位方法 被引量:1

Calibration Method of the Three-dimensional Face Model Feature Points Based on the Projection and Deep Learning Network
下载PDF
导出
摘要 标定三维人脸模型特征点对人脸识别、人脸建模等都具有重要作用。针对人脸特征点标定需要手工干预、标定特征点个数少或不准确、标定时间长等问题,提出了一种基于投影与深度学习网络的人脸三维模型特征点标定法。基于正交投影,生成人脸三维模型二维深度图与二维特征点位置,采用以卷积神经网络为主的深度学习网络模型训练测试,将深度图上特征点映射到三维人脸模型,实现眉毛、眼睛、鼻尖、嘴巴等重要区域的特征点定位。实验表明,该方法可自动标定三维人脸模型特征点,快速、准确预测足够数量特征点位置。 Calibration of the three-dimensional face model feature points has an important role on face recognition,face modeling,and so.Some problems still exist,like that Face feature points need to be manually calibrated,the number of calibration points is small or inaccurate,the calibration time is long,and so on.A feature point calibration method of face 3 Dmodel based on projection and depth learning network is proposed.Firstly,based on the orthogonal projection,the two-dimensional depth map and two-dimensional feature point position of the human face 3 Dmodel are generated.Then we use the depth learning network model,mainly based on the convolution neural network,to train and test,and map the feature points on the depth map to the 3 D human model.Finally,we achieve facial key points on eyebrows,eyes,the nose tip and the mouth.Experiments show that this method can automatically calibrate enough 3 Dface model feature points,fastly and accurately.
出处 《软件导刊》 2017年第12期12-14,18,共4页 Software Guide
关键词 三维人脸 特征点定位 投影 卷积神经网络 three dimensional face feature point positioning projection convolution neural network
  • 相关文献

参考文献8

二级参考文献87

  • 1XU C H,TAN T N,WANG Y H,et al.Combining local features for robust nose location in 3D facial data[J].Pattern Recognition Letters,2006,27(13):1487-1494.
  • 2SALAH A A,AKARUN L.3D facial feature localization for registration[C]//International Workshop on Multimedia Content Representation,Classification and Security,LNCS4105.Berlin:Springer-Verlag,2006:338-345.
  • 3SALAH A A,CINAR H,AKARUN L,et al.Robust facial landmarking fur registration[J].Annals of Tclecommunications,2007,62(12):1608-1633.
  • 4DIBEKLIOGLU H,SALAH A A,AKARUN L.3D facial landmarking under expression,pose,and occlusion variations[C/OL]// IEEE Second International Conference on Biometrics:Theory,Applications and Systems.Washington,DC:IEEE Press,2008[2009-05-04].http://www.cmpe.boun.edu.tr/- dibeklinghi/documenta/Dibeklioglu2008 bias.pdf.
  • 5AKAKIN H C,SALAH A A,AKARUN L,et al.2D/3D facial feature extraction[C]// Image Processing:Algorithms and Systems,Neural Networks,and Machine Learning,SPIE 6064.San Jose,USA:SPIE,2006:441-452.
  • 6CONDE C,CIPOLLA R,RODRIGUEZ-ARAGON L J.3D facial feature location with spin images[C]//MVA 2005:IAPR Conference on Machine Vision Applications.Tsukuba Science City,Japan:[s.n.],2005:418-421.
  • 7WANG Y,CHUA C-S,HO Y-K.Facial feature detection and face recognition from 2D and 3D images[J].Pattern Recognition Letters,2002,23(10):1191-1202.
  • 8CANTZLER H,FISHER R B.Comparison of HK and SC curvature description methods[C]//3 DIM '01:Third International Conference on 3D Digital Imaging and Modeling.Washington,DC:IEEE Computer Society,2001:285-291.
  • 9KOENDERINK J J,van DOORN A J.Sudace shape and curvature scales[J].Image and Vision Computing,1992,10(8):557-565.
  • 10WU ZHAOHUI,WANG YUEMING,PAN GANG.3D face recognition using local shape map[C]// ICIP 2004:IEEE International Conference on Image Processing.Washington,DC:IEEE Press,2004:2003-2006.

共引文献40

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部