期刊文献+

基于双边滤波与小波变换的分频滤波算法的分析 被引量:1

Frequency Filtering Algorithm Research Based on Bilateral Filtering and Second-generation Wavelet Transform
下载PDF
导出
摘要 针对图像在滤波时把图像的一些特征信息去除和图像分割边缘模糊的问题,提出了基于双边滤波和小波变换的分频滤波算法.通过二代小波提升变换后,得到图像的高频分量和低频分量,然后结合双边滤波和小波变换各自的优缺点,在低频分量部分采用双边滤波,在高频分量部分采用阈值小波变换,通过Matlab仿真结果分析,该方法在滤波过程中有很明显的优势. Aiming at the problem that some of the feature information of the image is removed and the edge of the image is blurred when filtering, a frequency filtering algorithm based on bilateral filtering and wavelet transform is proposed. After the second-generation wavelet lifting transform, the high-frequency components and low-frequency components of the image are obtained. Then, the advantages and disadvantages of the two-sided filtering and wavelet transform are combined. Binary filtering is used in the low frequency component, and the threshold wavelet transform is adopted in the high frequency component. Simulation results show that this method has obvious advantages in the filtering process.
出处 《嘉应学院学报》 2017年第11期35-37,共3页 Journal of Jiaying University
关键词 图像滤波 双边滤波 小波变换 image filtering bilateral filtering wavelet transform
  • 相关文献

参考文献3

二级参考文献24

  • 1赵宇明,崔磊,柴岗,吴越,朱锴.基于改进分水岭算法的组织细胞图像分析[J].生物医学工程学杂志,2005,22(6):1151-1156. 被引量:8
  • 2袁超伟.正交小波理论及其应用:博士学位论文[M].西安:西安交通大学图书馆,1994..
  • 3Gupta N, Swamy M N S, Plotkin E. Despeckling of medical ul- trasound images using data and rate adaptive lossy compression [ J ]. IEEE Trans. on Med. Ima. , 2005, 24 ( 6 ) : 743-754. [ DOI: 10. ll09/TMI. 2005. 847401 ].
  • 4Coup6 P, Hellier P, Kervrann C, et al. Nonlocal means-based speckle filtering for ultrasound Images [ J ]. IEEE Transactions on Image Processing, 2009, 18 (10) : 2221-2229. [ DOI: 10. 1109/TIP. 2009. 2024064 ].
  • 5Lee J. Digital image enhancement and noise filtering by use of lo- cal statistics [J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1980, 2(2) : 165-168.
  • 6Frost V, Stiles J, Shanmugan K, et al. A model for radar images and its application to adaptive digital filtering of muhiplicative noise [ J ]. IEEE Trans. Pattern Anal. Mack IntelL , 1982, 4(2) : 157-166.
  • 7Balocco S, Gatta C, Pujol O, et al. SRBF: speckle reducing bilater- al filtering [J]. Ultrasound Med Bid, 2010, 36(8) : 1353-1363.
  • 8Aja-Femndez S, Alberola-L6pez C. On the estimation of the co- efficient of variation for anisotropic diffusion speckle fltering [ J]. IEEE Transactions on Image Processing, 2006, 15 ( 9 ) : 2694- 2701. [DOI: 10. ll09/T1P. 2006. 877360].
  • 9Yu J, Tan J, Wang Y. Ultrasound speckle reduction by a SUSAN- controlled anisotropic diffusion method [ J]. Pattern Reco , 2010, 43: 3083-3092. [DOI: 10. lO16/j, patcog 2010. 04. 006].
  • 10Krissian K, Westin C, Kikinis R, et al. Oriented speckle reduc- ing anisotropic diffusion [ J]. IEEE Transactions Image Process- ing, 2007, 16 ( 5 ) : 1412-1424. [ DOI: 10. ll09/TIP. 2007. 891803 ].

共引文献37

同被引文献7

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部