摘要
实验的主要目的是探讨利用近红外光谱技术对鲜枣糖度指标进行无损检测的可行性。在485.32~993.61nm光谱范围内建立数学模型分析光谱与鲜枣糖度之间的联系。在所研究范围内,首先进行光谱预处理,以提高模型的分析精度。然后,分别选用偏最小二乘法(PLS)和主成分回归分析法(PCR)的化学计量学方法建立鲜枣校正模型。结果表明:PLS建模效果优于PCR。同时研究不同建模主成分因子对建模结果的影响,找出PLS建模的最佳主成分因子。实验结果表明,当主成分因子选择为5时建模效果最佳。
The objective of this experiment is to explore the feasibility of nondestructive testing of sugar content in jujube by using near infrared spectroscopy.A mathematical model was established to analyze the relationship between the spectrum and sugar content in the spectral range of 485.32~993.61 nm.The spectral pretreatment was carried out in order to improve the accuracy of the model.The chemometric methods of partial least squares(PLS)and principle component regression(PCR)were selected to establish calibration models of fresh dates.The results showed that PLS modeling is better than PCR.In addition,the influence of different principal component factors on the modeling results were studied,and the best principal component factor of PLS modeling is 5.
出处
《中国食品添加剂》
北大核心
2017年第11期150-154,共5页
China Food Additives
基金
国家自然科学基金(No.61403412)
关键词
近红外光谱
最小二乘法(PLS)
主成分回归分析法(PCR)
无损检测
主成分因子
near infrared spectroscopy
partial least squares(PLS)
principal component regression(PCR)
nondestructive testing
principal component factor