期刊文献+

一种求解多目标旅行商问题的混合进化算法 被引量:1

A hybrid evolutionary algorithm for multiobjective travelling salesman problem
下载PDF
导出
摘要 许多科学与工程优化问题往往需要转化为多目标旅行商问题进行求解,由于目标函数之间的冲突性,使得这类问题不存在能够优化所有目标函数的唯一最优解,而是存在一个Pareto最优解集或者Pareto Front。为了获得一个高质量的Pareto最优解集,提出了一种基于蚁群优化和差分进化的混合多目标进化算法。在提出的算法中,一方面采纳分解机制利用蚁群优化算子实现对Pareto最优解的开发,另一方面采纳拥挤度概念利用差分进化算子实现对Pareto Front的探索。通过对一组标准测试算例的仿真实验,结果表明所提出的算法比现有的算法能够获得分布性和收敛性更优的Pareto解集。 Many scientific and engineering problems can always transfer to multiobjective travelling salesman problems(TSPs),where there is only a set of Pareto optimal solution or Pareto front,rather than one single optimal solution that can optimize all objective functions simultaneously,due to the existence of multiple conflicting objectives.In this paper,a hybrid multiobjective evolutionary algorithm,which hybridizes the mechanism of ant colony optimization(ACO)and differential evolution(DE),is proposed for solving multiobjective TSP.Two different strategies are employed in the proposed algorithm,that is,ACO operators are used to make an exploration for a set of Pareto optimal solutions based on a decomposition mechanism and DE operators are used to makean exploitation to obtain a better Pareto front.Based on the experiments on a series of test instances,the proposed algorithmshows a Pareto solution set with better distribution and convergence than those from several state-of-the-art algorithms.
出处 《沈阳师范大学学报(自然科学版)》 CAS 2017年第4期425-429,共5页 Journal of Shenyang Normal University:Natural Science Edition
基金 国家自然科学基金资助项目(71671032)
关键词 旅行商问题 进化多目标优化 蚁群优化 差分进化 traveling salesman problem evolutionary multiobjective optimization ant colony optimization differential evolution
  • 相关文献

参考文献2

二级参考文献37

  • 1马清亮,胡昌华.多目标进化算法及其在控制领域中的应用综述[J].控制与决策,2006,21(5):481-486. 被引量:23
  • 2吴献东,金晓明,徐志成,王树青.微粒群算法在模拟移动床色谱分离过程优化中的应用[J].化工自动化及仪表,2006,33(4):5-9. 被引量:5
  • 3TSAI S J,SUN T Y,LIU Chan-cheng,et al.An improved multi-objective particle swarm optimizer for multi-objective problems[J].Expert Systems with Applications,2010,37(8):5872-5886.
  • 4KUNDU P K,ZHANG yan,RAY A K.Multi-objective optimization of simulated countercurrent moving bed chromatographic reactor for oxidative coupling of methane[J].Chemical Engineering Science,2009,64(19):4137-4149.
  • 5KENNEDY J,EBERHART B C.Particle swarm optimization[C] //Proc of IEEE International Conference on Neural Networks.1995:1942-1948.
  • 6COELLO C A,PULIDO G T,LECHUCA M S.Handling multiple objectives with particle swarm optimization[J].IEEE Trans on Evolutionary Computation,2004,8(3):256-279.
  • 7COELLO C A,LECHUGA M S.MOPSO:a proposal for multiple objective particle swarm optimization[C] //Proc of IEEE Congress on Evolutionary Computation.Piscataway:IEEE Press,2002:1051-1056.
  • 8SHI Yu-hui,EBERHART R C.A modified particle swarm optimizer[C] //Proc of IEEE International Conference on Evolutionary Computation.Piscataway:IEEE Press,1998:69-73.
  • 9EBERHART R,KENNEDY J.A new optimizer using particle swarm theory[C] //Proc of the 6th International Symposium on Micro Machine and Human Science.1995:39-43.
  • 10JO H H,LEE S K,KO D C,et al.A study on the optimal tool shape design in a hot forming process[J].Journal of Materials Processing Technology,2001,111 (1-3):127-131,.

共引文献205

同被引文献8

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部