期刊文献+

基于邻域粗糙集的主动学习方法 被引量:3

Algorithm for active learning based on neighbor rough set theory
下载PDF
导出
摘要 主动学习是机器学习领域的重要研究方向。现有主动学习方法通常选择不确定性的或具有代表性的样本供专家打标,然后添加到已标记的数据集中供分类器学习,但没能充分利用数据的分布信息,并且在野点采集问题上有待改进。结合邻域粗糙集理论,提出了一种基于邻域粗糙集的主动学习方法(neighhbor rough set active learning,NRS-AL)。实验结果表明,在加州大学数据集(university of California Irvine,UCI)上,该算法充分利用了数据的分布信息,同时结合样本的不确定性和代表性计算,处理了野点的选择,是一种能有效解决主动学习样本选择问题的算法,在accuracy,受试者工作特征(receiver operating characteristic curve,ROC)曲线下面的面积(area under curve,AUC)指标上优于文献中的主动学习算法。 Active learning is one of the major research directions of machine learning.Most active learning approaches select uncertain or representative unlabeled samples to query their labels,and then add them into labeled data sets for classifier learning.However,these approaches have not fully utilized data distribution information,and not processed outlier acquisition problem well enough,too.With neighbor rough set theory,an algorithm named NRS-AL is proposed.The experiment results have shown that in UCI data set,combined with uncertainty and representative calculation of samples,the proposed algorithm in this paper has solved the previous problems,and is effective in solving sample choosing problems in active learning,which shows better accuracy and AUC performances than others in the literatures.
出处 《重庆邮电大学学报(自然科学版)》 CSCD 北大核心 2017年第6期776-784,共9页 Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition)
基金 国家自然科学基金(61309014) 教育部人文社科规划项目(15XJA630003) 重庆市教委科学技术研究项目(KJ1500416) 重庆市基础与前沿研究计划项目(cstc2013jcyj A40063)~~
关键词 邻域粗糙集 主动学习 基于池的样本选择 neighborhood rough set active learning pool-based sample selection
  • 相关文献

参考文献2

二级参考文献31

  • 1李德毅,孟海军,史雪梅.隶属云和隶属云发生器[J].计算机研究与发展,1995,32(6):15-20. 被引量:1246
  • 2赵文清,朱永利,高伟华.一个基于决策粗糙集理论的信息过滤模型[J].计算机工程与应用,2007,43(7):185-187. 被引量:15
  • 3PAWLAK Z. Rough sets [ J ]. International Journal of Computer and Information Science, 1982, 11 (5) : 341-356.
  • 4PAWLAK Z. Rough Sets: Theoretical Aspects of Reasoning about Data [ M ]. Boston : Kluwer Academic Publishers Press, 1991:90-166.
  • 5苗夺谦,李道国.粗糙集理论、算法及应用[M].北京:清华大学出版社,2008:176-235.
  • 6YAO Y Y. Decision-theoretic rough set models [ C]// YAO J,Lingras P, Wu W Z, et al. Proceedings of the 2nd International Conference on Rough Sets and Knowledge Technology 2007, Lecture Notes in Computer Science 4481. Heidelberg: Springer, 2007 : 1-12.
  • 7YAO Y Y, WONG S K M. A decision theoretic framework for approximating concepts [ J ]. International Journal of Man-machine Studies, 1992, 37(6) : 793-809.
  • 8YAO Y Y, WONG S K M, LINGRAS P. A decision-theoretic rough set model [ C ]//RAS Z W, ZEMANKOVA M, EMRICHM M L. Proceedings of the 5th International Symposium on Methodologies for Intelligent Systems 1990. North-Holland : [ s. n. ] , 1990 : 17-25.
  • 9YAO Y Y. Probabilistic approaches to rough sets [ J ]. Expert Systems, 2003, 20 : 287-297.
  • 10AN Qiu-sheng,ZHU You-hong. Rough relational database and its development[ J]. Journal of Chongqing Universiey of Posts and Telecommunications (natural science edition) ,2009,21 (4) :474-478.

共引文献40

同被引文献28

引证文献3

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部