期刊文献+

载流圆线圈的磁场分布研究 被引量:3

Study on Magnetic Field Distribution of Current-carrying Coil
下载PDF
导出
摘要 利用毕奥-萨伐尔定律计算出载流圆线圈平面内和轴线上磁场分布的数学表达式,并结合实验数据分析研究载流圆线圈平面内部分场点的磁场分布情况以及轴线上磁感应强度的大小.结果表明,载流圆线圈平面内任意点的磁感应强度的大小与线圈半径和该点到圆心的距离有关,而载流圆线圈轴线上的磁场随场点到圆心距离的增大而逐渐减弱,且与轴线两端成对称分布.从而进一步加深了对毕奥-萨伐尔定律的认识.此外,采用软件Mac Os Grapher辅助处理实验数据,使结论更具直观性. The mathematical expressions of the magnetic field distribution in the plane and the axis of the toroidal circle are calculated by using the Biot-Savarts law, and the magnetic field distribution at the internal point of the plane of the current-carrying coil and the magnetic induction intensity is analyzed. The experimental results show that the size of the magnetic induction intensity at any point in the plane of the carrying coil is related to the radius of the coil and the distance from the point to the center. And the magnetic field on the axis of the current-carrying coil is weakened with the increase of the distance from the point to the center of the circle, and is sym-metrical with the two ends of the axis, which deepens the understanding of Biot-Savart s law. In addition, the use of software Mac Os Grapher auxi liary processing experimental data makes the conclusion more intuitive.
出处 《昆明学院学报》 2017年第6期94-97,100,共5页 Journal of Kunming University
关键词 载流圆线圈 毕奥-萨伐尔定律 磁感应强度 磁场分布 current-carrying coil Bio-Savarts law magnetic induction intensity magnetic field distribution
  • 相关文献

参考文献2

二级参考文献2

  • 1菲赫金哥尔茨.微积分学教程(第二卷一分册)[M].北京:人民教育出版社,1978:210-211.
  • 2复旦大学数学系.数学分析(下册)[M].2版.上海:上海科学技术出版社,1978:389-390.

共引文献10

同被引文献17

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部