期刊文献+

CPU-OpenMP和GPU-CUDA并行计算技术对矩阵乘法运算的加速效果分析 被引量:1

Accelerating Effect Analysis of Matrix Multiplication with CPU-OpenMP and GPU-CUDA Parallel Computing
下载PDF
导出
摘要 本文对比了CPU-OpenMP和GPU-CUDA并行计算技术对不同阶矩阵乘法运算相对于CPU单线程计算的加速效果。结果表明,CPU-OpenMP并行的计算加速比与矩阵阶数无关,且低于所采用的线程数目。GPU-CUDA并行的计算加速比随矩阵阶数的增加显著增加,最大计算加速比可达570倍以上。相对于CPU单线程计算结果,CPU-OpenMP并行计算未产生误差,而GPU-CUDA并行计算会产生误差。结果表明,GPUCUDA并行适合高阶数矩阵乘法的加速计算,而CPU-OpenMP并行适合低阶数矩阵乘法的加速计算。 This paper compares the accelerating effects of CPU-OpenMP and GPU-CUDA parallel computing on the computation of different-order matrix multiplication over CPU single-thread. The results show that the computational speedup of CPU-OpenMP parallelism is independent of matrix order and lower than the number of threads used. GPU-CUDA parallel computing speedup ratio increases significantly with the increase of the matrix order, the maximum computational speedup up to 570 times. Relative to the CPU single-thread calculations, CPU-OpenMP parallel computing did not produce errors, and GPU-CUDA parallel computing will produce errors. The results show that GPU-CUDA parallel is suitable for accelerated computing of high-order matrix multiplication, while CPU-OpenMP parallel is suitable for accelerated computing of low-order matrix multiplication.
作者 张岩
出处 《科技视界》 2017年第26期45-47,共3页 Science & Technology Vision
关键词 矩阵乘法 并行计算 CPU-OpenMP GPU-CUDA Matrix multiplication Parallel computing CPU- OpenMP GPU-CUDA
  • 相关文献

参考文献3

二级参考文献8

共引文献9

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部