期刊文献+

基于矩阵值因子模型的高维已实现协方差矩阵建模 被引量:6

Modeling High-Dimensional Realized Covariance Matrix Via Matrix-Valued Factor Model
下载PDF
导出
摘要 随着大数据时代的来临,待分析数据维度越来越高,高维协方差矩阵的估计与建模已经成为统计学领域的一个基本问题。本文提出基于Cholesky分解的可预测矩阵值因子模型,对高维已实现协方差矩阵进行了建模及预测。模型有效地降低了矩阵维度,显著减少了待估参数数目,有效地避免了估计误差的累积,且因子分析降维使得协方差矩阵元素之间的相依关系更加清晰。实际建模结果表明,模型与VAR-LASSO方法预测误差较为接近,但是降维效果更加明显,待估参数数目大大减少,更加具备应用价值。基于矩阵值因子模型构建的投资组合收益更加贴近真实投资组合收益,而且比VAR-LASSO方法更加稳健。 With the advent of the Big Data Era, the dimension of data is higher and higher, and the problem of modeling high-dimensional covarianee matrix becomes a fundamental issue. In this paper, we propose a novel method called the predictable matrix-valued factor model with the Cholesky decomposition, which could reduce the dimension of matrix effectively and reduce the number of estimated parameters significantly and avoid the aggregated errors. Meanwhile, due to the advantage of factor analysis, the relationships of entries in covariance matrix would be clarified. The consequence of modeling shows that the accuracy of proposed model is disFlayed in accordance with VAR-LASSO method. However, the number of estimated parameters decreases obviously. Lastly, we proceed empirical analysis and we learn that based on the forecasted realized covariance matrix constructed by different method, the final series of return derived from proposed model is more closed to real series of return. Additionally, the proposed model is more robust than VAR-LASSO method.
作者 宋鹏 胡永宏
出处 《统计研究》 CSSCI 北大核心 2017年第11期109-117,共9页 Statistical Research
基金 国家自然科学基金面上项目"稳健投资组合选择的并行最优化算法研究与实现"(61272193) 中央财经大学研究生科研创新基金项目"高维协方差阵建模及投资组合应用"(201607)资助
关键词 矩阵值因子模型 高维已实现协方差矩阵 CHOLESKY分解 向量自回归 Matrix-Valued Factor Model High-Dimensional Realized Covariance Matrix Cholesky Decomposition VAR
  • 相关文献

同被引文献48

引证文献6

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部