期刊文献+

格兰杰因果检验中不同检验方法的功效比较 被引量:8

The Efficacy Comparison for Different Test Methods in Granger Causality Test
下载PDF
导出
摘要 文章运用蒙特卡洛模拟方法,对F、LR、Wald、Mwald四种格兰杰因果检验统计量的检验效果进行了小样本模拟。研究结果表明:(1)极小样本条件下(n£50),LR统计量检验效果最佳,MWald统计量检验效果较差。(2)随着样本的增大,Wald、Mwald统计量检验效果将会逐步改善。(3)较大样本条件下(n=200,400),F、LR、Wald、Mwald四个统计量检验效果差异变小;在二维系统中,Wald、Mwald统计量检验效果最佳,LR统计量检验效果最差。(4)F统计量检验效果比较稳定,不随样本的增加出现较大改变。因此,在极小样本情况下,适合采用LR统计量检验序列间的格兰杰因果关系;在较大样本情况下,适合采用Wald、Mwald统计量检验序列间的格兰杰因果关系;而F统计量既适用极小样本的检验,也适用较大样本的检验。 This paper utilizes Monte Carlo simulation method to conduct a small sample simulation on'the granger causality test statistics for F,LR, Wald and Mwald. The study results indicate that (1) under the condition of very small sample (n ≤ 50), the test result of LR is best, yet Mwald relatively worse; (2) as the sample quantity increases, the test results of LR and Mwald improve gradually; (3) under the condition of large sample (n=200,400), the Difference in test results of F, LR, Wald and Mwald shrinks, and in two-dimensional system, the test results of Wald and Mwald perform best, yet LR the worst; (4) the test result of F remains relatively stable without much change with sample increasing. Based on these characteristics, the paper draws a conclusion: under the condition of a very small sample, the LR is suitable for the Granger causality for sequences; under the condition of a large sam- ple, the Wald and Mwald are more applicable; however, the F statistics is appropriate for both Minimal sample test and large sam- ple test simultaneously.
作者 范传棋 范丹
出处 《统计与决策》 CSSCI 北大核心 2017年第23期9-13,共5页 Statistics & Decision
基金 中央高校基本科研业务费专项资金青年教师成长资助项目(JBK160169)
关键词 格兰杰因果检验 ECM模型 数据生成 蒙特卡洛模拟 Granger causality test ECM model data generation Monte Carlo simulation
  • 相关文献

参考文献1

二级参考文献11

  • 1Granger C W J. Investigating causal relations by econometric models and cross-spectral methods [J]. Econometrica, 1969,37; 424 - 438.
  • 2Granger C W J. Testing for causality: A personal viewpoint[J]. J Economic Dynamics and Control, 1980, 2; 329-352.
  • 3Ohanian L E. The spurious effects of unit roots on vectorautor egressions: A Monte Carlo study [J]. J Econometrics.1988, 39:251-266.
  • 4Toda H Y, Phillipp C B. The spurious effect of unit roots on vector autoregressions [J]. J Econometrics, 1993, 59: 229-255.
  • 5He Zonglu, Maekawa Koichi. On spurious Granger Causality[J]. Economics Letter, 2001, 73: 307-313.
  • 6Caporale G M, Pittis N. Causality and forecasting in incomplete systems [J]. J Forecasting, 1997, 16: 425-437.
  • 7Hassapis C, Pittis N, Prodromidis K. Unit roots and Granger causality in the EMS interest rates: The German dominance hypothesis revisited [J]. J Int Money and Finance. 1999, 18: 47-73.
  • 8Clark T. Finite-sample properties of tests for equal forecast accuracy [J]. J Forecasting, 2000, 18: 489- 504.
  • 9Hurlin C, Venet B. Granger causality tests in panel data models with fixed coefficients [A]. 12th (EC)^2 Conf on Causality and Exogeneity in Econometrics [C]. Louvain-la-Neuve, 2001.
  • 10Sims C. Granger Causality [R]. Econ. 513, Time Series Econometrics, Fall, 1999.

共引文献125

同被引文献126

引证文献8

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部