期刊文献+

基于GA-OCPA学习系统的无人机路径规划方法 被引量:12

UAV path planning based on GA-OCPA learning system
原文传递
导出
摘要 为解决未知空域中无人机路径规划方法实时性和适用性不足的问题,以生物应激条件反射理论为基础,将无人机实时路径规划类比为在外界条件刺激下的一种自学习行为。首先,将概率自动机与遗传算法相结合,设计了基于Skinner操作条件反射理论框架(GA-OCPA)的学习系统;然后,将无人机规避机动的飞行速度、滚转加速度和拉升加速度作为系统学习的行为,并计算每次学习尝试之后的选择概率和个体适应度,通过遗传算法搜索最优行为进而得到最优路径;最后,运用增量多层判别回归树(IHDR)对学习得到的最优行为建立知识库,形成威胁状态与路径规划的匹配映射。实验结果表明GA-OCPA学习系统对于无人机路径规划具备有效性和适用性。 To solve the problem of deficiency in real-timeliness and applicability of path planning for the Unmanned Aerial Vehicle(UAV)in the unknown airspace,the real-time path planning of the UAV is simulated as a self-learning behavior under the condition of external stimuli,based on the biological operant conditioning theory.The probabilistic automaton is combined with the genetic algorithm to construct a learning system of Genetic Algorithm-Operant Conditioning Probabilistic Automaton(GA-OCPA)according to the Skinner operant conditioning.The UAVs' evasion maneuvering flight speed,rolling acceleration and climbing acceleration are taken as the learning behaviors of the system,and the probability of selection and individual fitness are calculated after each learning attempt.The optimal path can then be obtained by searching for the best behavior using the genetic algorithm.The knowledge base of the best learned behaviors is established using Incremental Hierarchical Discriminant Regression(IHDR),and the matching mapping between the threat state and path planning is then formed.The result shows the viability and applicability of the GA-OCPA learning system for UAV path planning.
出处 《航空学报》 EI CAS CSCD 北大核心 2017年第11期282-292,共11页 Acta Aeronautica et Astronautica Sinica
基金 国家自然科学基金(61202490) 航空科学基金(20150896010)~~
关键词 无人机 路径规划 遗传算法 操作条件反射 概率自动机 Unmanned Aerial Vehicle (UAV) path planning genetic algorithm operant conditioning probabilistic automaton
  • 相关文献

参考文献5

二级参考文献44

共引文献153

同被引文献121

引证文献12

二级引证文献117

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部