期刊文献+

基于迭代回归树模型的跨平台长尾商品购买行为预测 被引量:3

Connecting Social Media to E-Commerce:Predicting Long-tail Purchase Behaviors using Multiple Additive Regression Tree
下载PDF
导出
摘要 长尾商品是指单种商品销量较低,但是由于种类繁多,形成的累计销售总量较大,能够增加企业盈利空间的商品。在电子商务网站中,用户信息量较少且购买长尾商品数量较少、数据稀疏,因此对用户购买长尾商品的行为预测具有一定的挑战性。该文提出预测用户购买长尾商品的比例,研究单一用户购买长尾商品的整体偏好程度。利用社交媒体网站上海量的文本信息和丰富的用户个人信息,提取用户的个人属性、文本语义、关注关系、活跃时间等多个种类的特征;采用改进的迭代回归树模型MART(Multiple Additive Regression Tree),对用户购买长尾商品的行为进行预测分析;分别选取京东商城和新浪微博作为电子商务网站和社交媒体网站,使用真实数据构建回归预测实验,得到了一些有意义的发现。该文从社交媒体网站抽取用户特征,对于预测用户购买长尾商品的行为给出一个新颖的思路,可以更好地理解用户个性化需求,挖掘长尾市场潜在的经济价值,改进电子商务网站的服务。 Long-tail products,with low demands,occupy a significant share of total revenue in total.It is challenging to analyze the long-tail purchase behaviors due to the data sparsity resulted from few purchase behaviors.This paper proposes to leverage online social media information for predicting the long-tail purchase behaviors.In specific,we collect the user profiles form the social media information,including the status text,following links and temporal activity distributions,and predict their purchases by a weighted Multiple Additive Regression Trees(MART).Experimented on the data from JingDong and SinaWeibo,the effectiveness of the proposed method are revealed,together with several interesting findings.
出处 《中文信息学报》 CSCD 北大核心 2017年第5期185-193,共9页 Journal of Chinese Information Processing
基金 国家自然科学基金青年科学基金(61502502) 国家重点基础研究发展计划(2014CB340403) 北京市自然科学基金(4162032) 中国人民大学2016年度拔尖创新人才培育资助计划
关键词 长尾商品 电子商务 社交媒体 购买行为预测 long-tail products e-commerce shopping social media purchase prediction
  • 相关文献

参考文献3

二级参考文献16

  • 1龙卫江,张文修.基于相近原则的半指导直推学习机及其增量算法[J].应用数学学报,2006,29(4):619-632. 被引量:2
  • 2Nigam K,McCallum A K,Thrun S,Mitchell T.Text classification from labeled and unlabeled documents using EM[J].Machine Learning,2000,39(2-3):103-134.
  • 3Joachims T.Transductive inference for text classification using support vector machines[G].In:Proc 16th Int'l Conf Machine Learning,Bled,Slovenia,1999,200-209.
  • 4Blum A,Mitchell T.Combining labeled and unlabeled data with co-training[G].In:Proc 16th Annual Conf Computational Learning Theory,Madison,WI,1998,92-100.
  • 5Breiman L.,Friedman,J.,Olshen,R.,and Stone,C.Classification and Regression Trees[M].Wadsworth,1984.
  • 6Breiman L.Random forests[J].Machine Learning,2001,45(1):5-32.
  • 7Cortes,C.,Vapnik,V.M.,.Support Vector Networks[J].Machine Learning,1995,20:273-297.
  • 8Dietterich,T.G.An Experimental Comparison of Three Methods for Constructing Ensembles of Decision Trees:Bagging,Boosting,and Randomization[J].Machine Learning,2000,40:139-157.
  • 9Breiman,L.,Bagging Predictors[J].Machine Learning,1996,24(2):123-140.
  • 10Agrawal R,Imielinski T,Swami A.Mining association rules between sets of items in large databases[K].Proc of ACM SIGMOD Conf on Management of Data[C].Washington,1993.207-216.

共引文献334

同被引文献39

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部