期刊文献+

制造信息全面质量管理研究(一) 被引量:1

Investigation on TQM for manufacturing information
下载PDF
导出
摘要 从信息角度看,制造企业中一切制造活动都可以视为由一系列不同层次的、不同程度相关联的制造决策/执行/检测和再决策单元Dij组成,制造信息既是决策的依据又是决策的产出,制造信息质量对决策质量有决定性影响。指出了制造信息质量的重要性。为了改善制造企业的市场竞争力,必须获取、产出和有效利用高质量制造信息,减少不良制造信息。阐述了制造信息的主要用途。给出了制造信息的质量变量及其评估方法。着重阐述了对制造信息实施全面质量管理的必要性和可行性。讨论了高质量制造信息的应用特点。 To examine from the angle of information, all manufacturing activities in manufacturingenterprise can be regarded as consisting of decision units Dij , with manufacturing decision/ execution / inspection and decision once more functions in different levels with differentextent of mutual connections. Manufacturing information are both the input and output ofmanufacturing decisions, and the quality of manufacturing information has decisiveinfluence upon the quality of manufacturing decisions. The importance of the quality ofmanufacturing information is pointed out. In order to improve the competitive power ofmanufacturing enterprises, it is necessary to acquire and produce manufacturinginformation with high quality and at the same time to reduce the quantity of badmanufacturing information. The main uses of manufacturing information are listed. Qualityvariables and its evaluation for manufacturing information are given. The necessity andpossibility for implementing TQM upon manufacturing information are explained at length.The application of high quality manufacturing information is discussed
作者 张伯鹏
出处 《制造业自动化》 2002年第8期1-5,共5页 Manufacturing Automation
基金 国家自然科学基金重大资助项目(59990470)
关键词 制造信息 制造决策 制造信息质量 全面质量管理 manufacturing information manufacturing decision quality of manufacturing information TQM for manufacturing information
  • 相关文献

同被引文献8

  • 1谢楠,李爱平,徐立云.面向可重组制造系统的快速诊断技术研究[J].中国机械工程,2005,16(17):1545-1549. 被引量:6
  • 2Choudhary A, Harding J A, Tiwari M K. Data mining in manufacturing: a review based on the kind of knowledge [ J ]. Journal of Intelligent Manufacturing, 2009,20 ( 5 ) : 501-521.
  • 3Andrew Kusiak, Matthew Smith. Data mining in design of products and production systems [ J ]. Annual Reviews in Control ,2007,31 ( 1 ) : 147-156.
  • 4Massimo Pacellaa, Quirico Semerarob. Using recurrent neural networks to detect changes in autocorrelated processes for quality monitoring [ J 1. Computers & Indus- trial Engineering,2007,52(4) :502-520.
  • 5Yu Jian-bo, Xi Li-feng, Zhou Xiao-jun. Intelligent monito- ring and diagnosis of manufacturing processes using an in- tegrated approach of KBANN and GA [ J ]. Computers in Industry ,2008,59(5 ) :489-501.
  • 6Tseng T L, Kwonb Y, Erteki Y M. Feature-based rule in- duction in machining operation using rough set theory for quality assurance [ J ]. Robotics and Computer-Integrated Manufacturing, 2005,21 (6) : 559- 567.
  • 7殷国富,方辉,王卓,等.基于粗糙集的机械制造工艺知识发现方法研究[EB/OL].[2010-12-10].http://www.paper.edu.cn/index.php/defauh/releasepaper/content/200701-270.
  • 8徐显龙,同淑荣,孙宜然,曹宜英.支持保质设计的制造质量信息模型[J].制造业自动化,2008,30(7):14-17. 被引量:3

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部