期刊文献+

拉格朗日早年对其变分方法的参数化与发展

Lagrange's parameterization and generalizations of his method of variations in his earlier researches
下载PDF
导出
摘要 拉格朗日"变分方法"(亦称δ-算法)的引进,堪为变分法早期发展中的一次变革。然而在最初提出这一新方法时,拉格朗日却经历了由非参数向参数表示形式的转变,实现了该方法的参数化。依据原始文献,首先解析了拉格朗日δ-算法的非参数表示和参数表示,然后探讨了在参数化过程中他对变分法相关理论及应用所作的革新与发展。研究表明:通过参数化改造,拉格朗日对变分问题、变分方程、横截性条件以及变分法的力学应用——最小作用原理等均做出了拓广或发展。拉格朗日对其变分方法的参数化不仅开阔了变分法研究的范围,而且赋予了变分法在力学应用中的重大价值。 The invention of Lagrange's method of variations,which is now also known as δ-algorithm,ushered in a new epoch in the earlie history of the calculus of variations. During the introduction of the new method in his earlier researches,Lagrange experienced the change in his approach from the non-parametric to the parametric representation. Based on some original literature,the parameterization of his method of variation is thoroughly documented,and the innovations and development of the theory of the calculus of variations arisen from the parameterization are fully explored and revealed in this paper. The conclusion is that Lagrange greatly gen-eralizes the study of the following subjects in the process of the parameterization: the variational problem,the variational equation,the transversality condition,and the principle of least action of mechanics etc. Lagrange's parameterization of his method not only broadens the scope of the study of the calculus of variations,but also gives its significant value in mechanical applications.
出处 《西北大学学报(自然科学版)》 CAS CSCD 北大核心 2017年第6期923-928,共6页 Journal of Northwest University(Natural Science Edition)
基金 国家自然科学基金资助项目(11271108 11671117 11461059) 中国博士后科学基金资助项目(2012M510762) 重庆市教委科学技术研究基金资助项目(KJ111208) 教育部规划基金资助项目(16YJAZH009)
关键词 拉格朗日(J.L.Lagrange 1736—1813) 变分方法 非参数表示 参数表示 参数化 Joseph Louis Lagrange(1736-1813) method of variations the non-parametric representation the parametric representation parameterization
  • 相关文献

参考文献1

二级参考文献21

  • 1曲安京.中国数学史研究范式的转换[J].中国科技史杂志,2005,26(1):50-58. 被引量:59
  • 2易照华.拉格朗日[A].吴文俊.世界著名数学家传记[M].上册.北京:科学出版社,1995.706-708.
  • 3Euler L. Methodus Inveniendi Curvas Lineas Maximi Minimive Proprietate Gaudentes sive Solution Problematis Isoperimetrici Latissimo Sensu Accepti [ A ]. Caratheodory C (eds). Leonhardi Euleri Opera Omnia [ C ]. Set. I, Vol. 24. Zurich : OreU Fussli, 1952.
  • 4Caratheodory C. The Beginning of Research in the Calculus of Variations [J]. Orisis, 1937, 3:224--240.
  • 5Goldstine H H. A History of the Calculus of Variations from the 17th through the 19th Century[ M]. Berlin\New York : Spfinger-Verlag, 1980.
  • 6Lagrange J L. Letter to Euler 12 August 1755 [A]. Serret J A(eds). Oeuvres de Lagrange[ C]. Vol. XIV. Paris: Gauthier-Villars, 1892. 138-144.
  • 7Euler L. Letter to Lagrange 6 September 1755[A]. Juskevic A P, Taton R(eds). Leordardi Euleri Opera Omnia[C]. Ser. IVA, Vol. 5. Basel: Birkhauser, 1980. 375--378.
  • 8Euler L. Elementa Calculi Variationum[ A ]. Carath6odory C (eds). Leonhardi Euleri Opera Omnia [ C ]. Ser. I, Vol. 25. Zurich: Orell Fussli,1952. 141--176.
  • 9Euler L. Analytica Explicatio Maximorum et M inimorum[ A ]. Caratheodory C (eds). Leonhardi Euleri Opera Omnia [ C ]. Ser. I, Vol. 25. Zurich: Orell Fussli, 1952. 177--207.
  • 10Woodhouse R. A Treatise on Isoperimetrical Problems and the Calculus of Variations [ M ]. Cambridge U. K. : Cambridge University Press, 1810.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部