期刊文献+

基于深度神经网络的车辆特征识别方法

Vehicle feature recognition based on deep neural network
下载PDF
导出
摘要 提出了一种基于深度神经网络的车辆特征识别方法,通过车辆特征智能检测识别实现交通智能监控和管理.采用三维区域轮廓扫描方法进行车辆图像采集和几何形状判断,对采集的车辆图像进行边缘轮廓检测和信息增强处理,突出车辆的类别属性特征点,在仿射不变区域对车辆角点分布信息进行直方图均衡化处理,实现车辆像素特征点的提取.对提取的像素特征点采用深度神经网络进行分类训练,实现车辆特征的智能识别.选取大量交通视频图像进行实验,仿真结果表明采用该方法进行车辆特征识别的成功率较高,输出车辆特征点正确的像素总数较多,对目标车辆的准确检测定位性能较好. An identification method of vehicle features depth based on neural network is proposed,it can realize the vehicle intelligent identification for intelligent traffic monitoring and management. By using 3D contour scanning method for vehicle image collectionand geometry of judgment,and the vehicle image edge detection and contour information enhancement,the categorical feature pointshighlight the vehicles. In the affine invariant region of the vehicle corner distribution information histogram is equalized,and the pixelfeature extraction is realized. The vehicle classification training of pixel feature extraction using deep neural network,intelligent recognition of vehicle features is realized. Through a large number of traffic video images,the simulation results show that using the methodthe success rate of vehicle feature recognition is high,and the total number of pixels of the vehicle is more accurate,which shows thatthe detection and localization of the target vehicle is high.
作者 李浩 王旭辉
出处 《河南工程学院学报(自然科学版)》 2017年第4期44-48,共5页 Journal of Henan University of Engineering:Natural Science Edition
关键词 深度神经网络 车辆 特征识别 分类 像素 deep neural network vehicle feature recognition classification pixel
  • 相关文献

参考文献8

二级参考文献60

  • 1张引.基于空间分布的最大类间方差牌照图像二值化算法[J].浙江大学学报(工学版),2001,35(2):219-219. 被引量:39
  • 2王典,程咏梅,杨涛,潘泉,赵春晖.基于混合高斯模型的运动阴影抑制算法[J].计算机应用,2006,26(5):1021-1023. 被引量:20
  • 3吴盘龙,李言俊,张科.一种红外目标图像的自动分割方法[J].计算机工程,2006,32(11):32-33. 被引量:5
  • 4赵涛,杨晓莉,王绪本,张娜.一种用于车牌定位的改进BP神经网络方法[J].计算机仿真,2007,24(2):240-243. 被引量:25
  • 5GonzalezRC等著,阮秋琦等译.数字图像处理(第二版)[M].北京:电子工业出版,2003.
  • 6Nadimi S, Bhanu B. Moving Shadow Detection Using A Physics Based Approach [J]. Pattern Recognition, 2002, (2)701 -704.
  • 7Trivedi M, Bhonsle S, Gupta A. Database Architecture For Auton- omous Transportation Agents For On - Scene Networked Incident Management(Aton) [ J ]. Pattern Recognition, 2000, (4) 664 - 667.
  • 8Prati A, Mikic I, Grana C, Trivedi M. Shadow Detection Algo- rithms For Traffic Flow Analysis A Comparative Study [ J ]. Intelli- gent Transportation Systems, 2001:340 - 345.
  • 9Salvador E, Cavallaro A, Ebrahimi T. Cast Shadow Segmentation Using Invariant Color Features [ J ]. Computer Vision and Image Understanding, 2004, 2 (95) : 238 - 259.
  • 10Geusebroek J, Smeulders A W M, et al. Measurement of Color In- variants [ J ]. Computer Vision and Pattern Recognition, 2000, (1) :50 -57.

共引文献155

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部