期刊文献+

感应线圈炮中电枢感应电流产生机理及特性 被引量:8

Mechanics and Characteristics of Induced Current in Armature for Induction Coil Gun
下载PDF
导出
摘要 电枢感应电流方向与驱动线圈放电电流方向相反时,电枢才会受到电磁推力,因此电枢感应电流的特性将影响电枢的加速性能。介绍了电磁感应线圈发射器的工作原理,建立了感应线圈发射器的数学模型。基于电磁感应定律和楞次定律,分析了影响电枢感应电流的因素:驱动线圈电流变化和电枢运动,并给出了驱动线圈放电电流的峰值点和电枢感应电流反向点之间的关系。研究结论表明:电枢中感应电流主要由感生电流和动生电流构成;电枢在运动过程中,其感应电流的方向发生了反向,反向时刻与电枢的速度相关,电枢的速度越高,电流反向时间越早,反之越晚。 Only when the direction of induced current in armature is opposite to the discharge current in driving coil, the armature will be subject to electromagnetic thrust. Consequently, the characteris- tics of induced current in armature for induction coil launcher will affect the acceleration performance of armature. An introduction was made of the working principle of induction coil launcher with the mathe- matical model of induction coil launcher established. After that, based on the electromagnetic induc- tion law and Lenz' s law, an analysis was conducted of the factors affecting the induction current in ar- mature respectively: the variation of the driving current and the movement of armature. And then pre- sented was the relation between the peak point of discharge current and the reverse point of induced current. The research conclusions show that the induced current consists of induction current and mo- tional current. In addition, the direction of induced current in armature was reversed in the course of motion. However, the reverse time is related to the armature velocity. Generally, the larger the armature velocity is, the earlier the reverse time appears.
机构地区 军械工程学院
出处 《火炮发射与控制学报》 北大核心 2017年第4期1-5,共5页 Journal of Gun Launch & Control
基金 国家自然科学基金项目(51477181)
关键词 电气工程 线圈炮 电枢 感生电流 动生电流 特性 electrical engineering coil gun armature induced current motional current characte- ristics
  • 相关文献

参考文献4

二级参考文献54

  • 1张朝伟,李治源,陈风波,姜国臣,程树康.感应线圈炮的电枢受力分析[J].高电压技术,2005,31(12):32-34. 被引量:24
  • 2Kolm H, Mongeau P. Basic principles of coaxial launch technology[J]. IEEE Transactions on Magnetics, 1984, 20(2): 227-230.
  • 3Kaye R J. Operational requirements and issues for coilgun EM launchers[J]. IEEE Transactions on Magnetics, 2005, 41(1): 194-199.
  • 4Kaye R J, Turman B, Aubuchon M, et al. Induction coilgun for EM mortar[C]//16th IEEE International Pulsed Power Conference. Albu- querque, USA: IEEE, 2007: 1810-1813.
  • 5Wang Y, Marshall R A, Cheng S K. Physics of electric launch[M]. Beijing, China: Science Press, 2004: 1-20.
  • 6Kaye R J, Eugene C, Cowan M, et al. Design and performance of Sandia's contactless coilgun for 50 rnm projectiles[J]. IEEE Transac- tions on Magnetics, 1993, 29(1): 680-685.
  • 7Kaye R J, Conare E C, Douglas M C, et al. Design and performance of Sandia's contactless coilgun for 50 mm projectiles[J]. IEEE Transac- tions on Magnetics, 1995, 29(1): 478-483.
  • 8Aubuchon M S, Lockner T R, Turman B N, et al. Results from Sandia National nhnrntr:rl:.c/l n:'kho:d Martin electromagnetic missile launcher (EMML)[C]//15tb IEEE International Pulsed Power Confe- rence. Monterey, USA: IEEE, 2005: 75-78.
  • 9Skurdal B D, Gaigler R L. Multimission electromagnetic launcher[J]. IEEE Transactions on Magnetics, 2009, 45(1): 458-461.
  • 10Shokair I R, Cowan M, Kaye R J, et al. Performance of an induction coil launcher[J]. IEEE Transactions on Magnetics, 1995, 31(1): 510-515.

共引文献20

同被引文献57

引证文献8

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部