期刊文献+

基于区域划分的分布式短期负荷预测方案设计 被引量:3

Design of Distributed Short-term Load Forecasting Scheme Based on Region Division
原文传递
导出
摘要 针对电网台区分布特征,本文提出基于负荷分解的台区大数据负荷预测方案,首先结合Hadoop集群构建了面向用电信息采集系统大数据的处理架构和计算服务架构,其次使用BP神经网络进行台区停电时刻负荷预测,最后基于Map/Reduce函数式程序处理大数据的"分而治之"思想将大区域台区负荷进行分层分区,在数据分析基础上建立负荷预测模型,设计台区负荷预测方案。测试结果表明:该方法可实现大区内负荷精细化预测,与传统的系统负荷预测方式相比,实例证明该方法具有明显优势。 Against the distribution characteristics of the grid station, this paper proposes a zone large data load lorecasting scheme based on load decomposition. Firstly, the Hadoop cluster is used to construct the processing architecture and computing service architecture for the large data of the electricity-consumption information collection system, secondly, BP neural network is used to forecast the load in the zone at the power outage time,finally,based on the idea of "divide and conquer" which is used by Map/Reduce function program to deal with large data, large regional zone load is hierarchical partition, the load forecasting model is established on the basis of data analysis, design of zone load forecasting scheme. The test results show: this method can realize the fine load forecasting in the large region, compared with the traditional system load forecasting method, the example proves that the methdod has obvious advantages.
出处 《自动化与仪器仪表》 2017年第12期88-91,共4页 Automation & Instrumentation
关键词 区域划分 BP MAP/REDUCE 负荷预测 regional division BP Map/Reduce load forecasting
  • 相关文献

参考文献13

二级参考文献214

共引文献1553

同被引文献16

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部