期刊文献+

基于用户行为的改进PageRank影响力算法 被引量:4

Improved PageRank Influence Algorithm Based on User Behavior
下载PDF
导出
摘要 PageRank算法在计算用户影响力方面只考虑用户间的跟随关系,导致计算结果准确性低下。为此,提出一种将用户行为因素与PageRank算法相结合的URank算法。利用网络中用户发布信息的转发率、评论率以及是否认证等行为因素,综合用户自身质量与追随者质量,得到用户影响力。基于SIR传播模型的实验结果表明,URank算法在计算准确性方面优于PageRank算法。 In the calculation of user influence, the PageRank algorithm considers only the following relation among users,which leads to the low accuracy of the calculation results. Therefore, a URank algorithm combining user behavior factors with PageRank algorithm is proposed. By using the factors such as forwarding rate, comment rate and authentication,the user' s quality can be obtained by combining the quality of users and the quality of followers. Experimental results show that based on the SIR propagation model,URank algorithm is superior to PageRank algorithm in computational accuracy.
出处 《计算机工程》 CAS CSCD 北大核心 2017年第12期155-159,共5页 Computer Engineering
基金 吉林省科技发展计划重点科技攻关项目(20150204036GX)
关键词 社交网络 用户影响力 PAGERANK算法 用户行为 传播模型 social network user influence PageRank algorithm user behavior propagation model
  • 相关文献

参考文献5

二级参考文献39

  • 1欧健文,董守斌,蔡斌.模板化网页主题信息的提取方法[J].清华大学学报(自然科学版),2005,45(S1):1743-1747. 被引量:70
  • 2周立柱,林玲.聚焦爬虫技术研究综述[J].计算机应用,2005,25(9):1965-1969. 被引量:156
  • 3樊兴华,孙茂松.一种高性能的两类中文文本分类方法[J].计算机学报,2006,29(1):124-131. 被引量:70
  • 4Pieter N, Michiel H. Mining Twitter in the cloud: A case study [C]// Proceedings of the 2010 IEEE 3rd International Conference on Cloud Computing, CLOUD 2010. Miami, USA: IEEE Computer Society, 2010: 107 -114.
  • 5Abraham R, Martinez T. Twitter: Network properties analysis [C]// Proceedings of the CONIELECOMP 2010 20th International Conference on Electronics Communications and Computers. Cholula Puebla, Mexico: IEEE Computer Society, 2010: 180 - 184.
  • 6wenE,SunV.新浪微博研究报告[Z/OL].(2011-05-20),http://www.techweb.com.cn/data/2011-02-25/916941.shtml.
  • 7HAN Ruixia. The influence of microblogging on personal public participation [C]// Proceedings of the 2010 IEEE 2nd Symposium on Web Society, SWS 2010. Beijing, China: Association for Computing Machinery, 2010:615 -618.
  • 8KANG Shulong, ZHANG Chuang. Complexity research of massively microhlogging based on human behaviors [C]//2010 2nd International Workshop on Database Technology and Applications, DBTA2010 Proceedings. Wuhan, China: IEEE Computer Society, 2010: 1 -4.
  • 9WANG Rui, JIN Yongsheng. An empirical study on the relationship between the followers' number and influence of microblogging [C]// Proceedings of the International Conference on E-Business and E-Government, ICEE 2010. Guangzhou, China: IEEE Computer Society, 2010: 2014- 2017.
  • 10Westman S, Freund L characters or less : Genres on interaction in 140 twitter [C]//IIiX 2010 Proceedings of the 2010 Information Interaction in Context Symposium. New Brunswick, USA: Association for Computing Machinery, 2010:323 - 326.

共引文献306

同被引文献42

引证文献4

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部