期刊文献+

有机荧光温度传感体系研究进展 被引量:2

Progress in Organic Fluorescent Thermometers
原文传递
导出
摘要 温度是最常见的物理量之一,对温度的精确测量无论在科学研究还是在生产生活中均具有重要意义.荧光温度传感是一种新型半侵入式温度测量方法,具有高灵敏度、快速响应、可视化效果好等优点.有机荧光分子是最早用于荧光温度传感的材料,近年来有机荧光温度传感体系研究取得显著进展.主要对近五年有机荧光温度传感的重要研究成果进行综述,并对其未来发展进行展望. Temperature is a basic physical parameter. Accurate measurement of temperature is of importance to scientific research and to industry production and life. Fluorescent temperature sensing, as a new method for temperature measurement, has received much attention because of its high resolution, fast response and observation with bear eyes, etc. Organic fluo- rescence probes are firstly used in fluorescent temperature sensing due to the versatility of structures, easier modification, and the consequent multiple spectral responses. The fluorescent thermometers can be applied in the temperature sensing of large area, microfluids, biological systems and so on, which make them attractive in the field of fluorescent probes research. In recent years, fluorescent thermometers based on organic fluorescence probes have made remarkable progress. Two major kinds of organic fluorescence thermometers are classified in this review based on the response of fluorescence wavelength, one is the single-wavelength response type, and the other is the ratiometric one. For the single-wavelength type, there are thermal-quenching and thermal-enhancing fluorescence thermometers based on the temperature-dependent trend of emission intensity. At the earlier stage, organic chromophores with high fluorescence quantum yields are adopted as the thermal quenching fluorescence thermometer, and recently a series of conformation-regulated organic thermometers based on den- dritic structure and aggregation-induced emission chromophore was developed. Thermal response macromolecules including PNIPAM, PEG and DNA are widely used to create thermal responsive microenvironment to regulate chromophore emission, and then develop thermal-enhancing fluorescence thermometers. Ratiometric fluorescence thermometers show better sensi- tivity and accuracy than single-wavelength ones due to their self-correction property based on the different thermal-response of emission at two wavelengths. Several kinds of ratiometric sensing systems have been developed, which are based on dye-copolymerized/doped polymer systems, monomer-excimer ratiometric emission, chromophores with thermal transition of local excited state and twisted intramolecular charge transfer state, and chromophores with thermal-induced crystal transfer. In this review, recent advances of organic fluorescence thermometers mentioned above will be presented and the challenges and the future development will be discussed.
出处 《化学学报》 SCIE CAS CSCD 北大核心 2017年第12期1164-1172,共9页 Acta Chimica Sinica
基金 国家自然科学基金(No.21233011) 973项目(Nos.2013CB834703 and 2013CB834505)资助~~
关键词 温度传感器 有机染料 荧光 比率荧光 分子内电荷转移 激基缔合物 temperature sensor organic dye fluorescence ratiometric fluorescence intramolecular charge transfer excimer
  • 相关文献

参考文献2

二级参考文献6

共引文献7

同被引文献7

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部