期刊文献+

量子信息理论中的几个数学问题 被引量:3

Several mathematical problems in quantum information theory
原文传递
导出
摘要 20世纪80年代以来,量子通信理论和技术成为信息领域的热门研究课题.本文综述量子信息理论中一些数学问题的研究进展,特别强调组合数学(包括图论)、数论、代数学和代数几何(有限域上代数曲线的算术理论)在研究量子测量和量子纠错等问题中所起的作用. The theory of quantum communication and technology have been one of hot research topics in information science and technology since 1980's. In this paper, we survey some research development of several mathematical problems in quantum information theory. Particularly, we focus on the important role of combina- torics (including graph theory), number theory, algebra and algebraic geometry (the arithmetic theory of algebraic curves over finite field) in investigating Quantum measurement and ouantum error-correction.
出处 《中国科学:数学》 CSCD 北大核心 2017年第11期1387-1408,共22页 Scientia Sinica:Mathematica
基金 国家自然科学基金(批准号:11471178和11571007) 清华大学"信息科学与技术"国家重点实验室 上海市科委青年科技英才扬帆计划(批准号:15YF1401200)资助项目
关键词 乘积态 彼此无偏基 量子纠错码 product state, mutually unbiased bases, quantum error correcting codes
  • 相关文献

参考文献2

二级参考文献23

  • 1WANG WeiYang1,FENG RongQuan1 & FENG KeQin2 1School of Mathematical Sciences,Peking University,Beijing 100871,China,2Department of Mathematical Sciences,Tsinghua University,Beijing 100084,China.Inhomogenous quantum codes (Ⅰ):additive case[J].Science China Mathematics,2010,53(9):2501-2510. 被引量:4
  • 2Klappenecker A, Rotteler M, Spharlinski I E, et al. On approximately symmetric informationally complete positive operator-valued measures and related systerns of quantum states. J Math Phys, 2005, 46:.
  • 3Planat M, Rosu H C, Perrine S. A surey of finite algebraic geometrical structures underlying mutually unbiased quantum measurements. Found Phys, 2006, 36: 1662-1680.
  • 4Roy A, Scott A J. Weighted complex projective 2-designs from bases: optimal state determination by orthogonal meaurements. J Math Phys, 2007,48: 072110.
  • 5Renes J M,. Blume-Kohout R, Scott A J, et al. Symmetric informationally complete quantum measurements. J Math Phys, 2004, 45: 2171.
  • 6Renes J M. Equiangular spherical codes in quantum cryptography. Quantum Inf Comput, 2005, 5: 80-91.
  • 7Zhu H J, Englert B G. Quantum state tomography with joint SIC POMs and product SIC POMs. ArXiv:quantph/l105.4561 v I.
  • 8Durt T, Emglert B G, Bengtsson t, et al. On mutually unbiased bases. lnt J Quantum Inf, 2010, 8: 535-640.
  • 9Godsil C, Roy A. Equianglar line, mutually unbiased bases and spin model. Euro J Combin, 2009, 30: 246-262.
  • 10McConnell G, Gross D. Efficient 2-designs from bases exist. ArXiv:quant-phj0717.1502vl.

共引文献2

同被引文献13

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部