期刊文献+

无序合金高通量计算平台HCPRA的搭建及其应用

Construction of high-throughput computation platform for random alloys(HCPRA) and its applications
原文传递
导出
摘要 介绍了无序合金高通量计算平台(high-throughput computation platform for random alloys,HCPRA)的设计难点、解决方案和基本框架.详细地介绍了如何让平台自动化地创建大量的初始结构,为各体系设置精度相当的计算参数以及如何提取和分析计算结果.该平台采用Fortran和Shell语言搭建,主要功能是实现大批量自动化地计算无序合金的力学和热力学性质.为了测试其效率,利用该平台计算了47种金属单质的弹性常数,结果表明一台8核的计算机运行一天就能完成上述计算. Materials play not only an important role in academic research but also a rather important role in daily life. The discovery of a new material can make a significant contribution to both scientific research and society development. For example, the discovery of graphene in 2004 has attracted enormous attention in academic circle and graphene has shown promising applications in electronic and optical devices. However, the period of discovering a new material is too long to satisfy the demand of society. To speed up the process, Advanced Manufacturing Partnership was proposed in 2011 by US President Obama. This plan has a key part: Materials Genome Initiative (MGI). MGI is made up with three part, (1) construction of high-throughput computation platforms, (2) construction of high-throughput experimental platforms and (3) construction of databases. The high-throughput computation and experimental platforms have promising applications in investigating known materials as well as discovering new materials with high efficiency since they can produce a large amount of data in a short term. Databases can provide convenience for data analysis and machine learning that is a prevailing way to design new materials. In this paper, we present our new designed High-throughput Computational Platform for Random Alloys. The platform is built by using Fortran and Shell languages and its main function is to calculate mechanical and thermodynamic properties of random alloys in large quantities automatically by employing the Vienna ab-initio Simulation Package (VASP). There are two main problems that are needed to be solved in the construction of High-throughput Computational Platform for Random Alloys. The first one is the creation of structures for random binary alloys. Another is to set the comparable computational parameters for all calculations automatically. To create structures for binary random alloys, we employ Alloy Theoretic Automated Toolkit to obtain a set of special quasi- random structure templates. Then, we collect all structure information for elementary substance from literature or by performing the first principles calculations. Finally, we design the platform to create special quasi-random structures (POSCAR) for all kinds of binary random alloys by using the templates and structure information of elementary substance combine with the Neumann-Kopp rule. In order to set comparable computational parameters for the VASP calculations, we write a code to read the structure information from POSCAR and use the information to set a comparable k-mesh for all calculations. The INCAR file is created by using the information from POSCAR and POTCAR. After all input files are generated, the platform employs VASP to perform the first-principles calculations. The platform is also designed to extract and analyze calculation results as well as print a calculation report and save all the calculation data into a database. The platform also has some useful functions such as error information-outputting system and error-skipping system. The function is rather important since convergence problem is inevitable in the first-principle calculations especially in high throughput calculations. To test the efficiency of the platform, elastic constants of 47 pure metals are investigated which indicates a computer with eight cores can finish all calculations in one day. And all calculated results match those in the literature well. By using the platform, the mechanical properties of zirconium based binary alloys are investigated and we find the elastic constants and elastic modulus can be well described by a parabolic function.
出处 《科学通报》 EI CAS CSCD 北大核心 2017年第33期3894-3901,共8页 Chinese Science Bulletin
基金 国家自然科学基金(11534012 U1230202)资助
关键词 高通量平台 无序合金 力学性质 弹性常数 热力学性质 high-throughput computation platform, random alloys, mechanical properties, elastic constant, thermodynamicproperties
  • 相关文献

参考文献3

二级参考文献103

  • 1刘海定,汤爱涛,潘复生,左汝林.材料科学数据库的研究现状及其发展趋势[J].材料导报,2004,18(9):5-7. 被引量:21
  • 2苏航,张解,陈晓玲,木原重光,张永权.多国钢铁材料牌号的计算机自动匹配技术[J].材料导报,2005,19(11):8-11. 被引量:5
  • 3National Science and Technology Council.Materials Genome Initiative for Global Competitiveness,2011June 3.
  • 4National Science and Technology Council.Materials Genome Initiative for Global Competitiveness,2011 June 8.
  • 5Li J W H,Vederas J C.Drug discovery and natural products:End of an era or an endless frontier.Science,2009,325:161-165.
  • 6Rodgers J R,Cebon D.Materials informatics.MRS Bull,2006,31:975-980.
  • 7Balachandran P V,Broderick S R,Rajan K.Identifying the "inorganic gene" for high-temperature piezoelectric perovskites through statistical learning.Proc R Soc A-Math Phys Eng Sci,2011,467:2271-2290.
  • 8William S,Austin T.Ontologies.IEEE Intell Syst,1999,14:18-19.
  • 9Gruber T R.Towards principles for the design of ontologies used for knowledge sharing.Int J Human-ComputStud,1993,43:907-928.
  • 10Selim S Z,Alsultmi K.A simulated annealing algorithm for the clustering problem.Pattern Recognit,1991,24:1003-1008.

共引文献65

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部