2Glowinski R, Pan T W, Pe/ riaux J. A fictitious domainmethod for Dirichlet problems and applications [ J ]. CompMeth Appl Mech Eng,1994,111(3/4) :283-303.
3Glowinski R, Pan T W, Hesla T I, et al. A distributed la-grange multiplier/fictitious domain method for particulateflows f J]. Int J Multiphase Flow, 1999,25 (5 ) :755-794.
4Glowinski R,Pan T W,Hesla T I,et al. A fictitious domainapproach to the direct numerical simulation of incompress-ible viscous flow past moving rigid bodies : application toparticulate flow [ J]. J Comput Phys,2001,169(2) :363-426.
5Yu Zhaosheng,Shao Xueming. A direct-forcing fictitious do-main method for particulate flows [ J]. Journal of Compu-tational Physics ,2007,227 (1) :292-314.
6Shi Yang, Yu Zhaosheng,Shao Xueming. Combination of thedirect-forcing fictitious domain method and the sharp in-terface method for the three-dimensional dielectrophoresisof particles [ J ]. Powder Technology,2011,210 (1 ) : 52-59.
7Peskin C S. Numerical analysis of blood flow in the heart[J].J Comput Phys, 1997,25(3) :220-252.
8Wu Shifeng’Yuan Li. An improved fictitious domain methodfor simulating sedimenting rigid particle in a viscous fluid[J]. Communications in Computer and Information Sci-ence, 2014,405: 450^59.
9Wu Shifeng, Yuan Li. A hybrid FD-DEM solver for rigidparticles in viscous fluid [J]. Computers & Fluids,2015,118:159-166.
10Yang Xiaolei, Zhang Xing, Li Zhilin, et al. A smoothingtechnique for discrete delta functions with application toimmersed boundary method in moving boundary simula-tions [ J ]. Journal of Computational Physics,2009, 228(20):7821-7836.