期刊文献+

四自由度压电微夹钳的设计 被引量:3

Design of a 4-DOF Piezoelectric Micro-gripper
下载PDF
导出
摘要 为降低微夹钳前端执行机构的复杂度,探索四自由度压电微夹钳的实现问题。通过在被设计成夹钳形状的两个压电单晶片的非黏结面上制作相互绝缘的驱动电极,且使两个非黏结面上驱动电极相互对齐的方法,设计出了可同时产生夹持方向与垂直于夹持方向位移的四自由度压电微夹钳;采用压电悬臂梁变形理论,推导出了钳指位移同钳指几何参数、驱动电压的关系,进而在对钳指进行尺寸优化的基础上,采用有限元方法分析了其静动态特性;最后,对微夹钳的静动态特性进行了测试,结果表明:当驱动电压为60 V时,左钳指、右钳指在夹持方向上的位移分别为25.7μm、26.1μm,左、右钳指在垂直于夹持方向上的位移分别为33.5μm、32.8μm,钳指位移具有很好的重复性;微夹钳在夹持方向和垂直于夹持方向的固有频率分别为2.35 k Hz、0.62 k Hz;在15 V的阶跃电压作用下,微夹钳在夹持方向和垂直于夹持方向的响应时间均为0.23 s。 To reduce the complexity of micromanipulation system, a 4-DOF piezoelectric micro-gripper is proposed. Firstly, a 4-DOF piezoelectric micro-gripper is designed using the piezoelectric bimorph actuators. The gripper could bring displacements both in the gripping direction and the vertical direction. The gripper is composed of two unimorphs which is designed as clamp shape. The driving electrodes of the gripper are fabricated on non adhesive surface of each unimorph. The driving electrodes on the unimorph are mutually insulated and aligned with each other. Secondly, the relationships between the displacement and the geometric parameters of the finger, as well as driving voltage are deduced based on the bending theory of piezoelectric cantilevers. Then the static and dynamic characterizations of the optimized gripper are analyzed using ANSYS. Finally, the static and the dynamic performances of the micro-gripper are tested experimentally. The results show that: at the driving voltage of 60 V, the displacements of the left and right finger in the gripping direction are 25.7 μm and 26.1 μm, respectively; the displacements of the left and right finger in the vertical direction are 33.8 μm and 32.8 μm, respectively. The displacements of two fingers have good repeatability. In the gripping direction and the vertical direction, the natural frequencies of the gripper are 2.35 k Hz and 0.62 k Hz, respectively. The response time of the micro-gripper in the gripping direction and vertical to the gripping direction are both 0.23 s at the step voltage of 15 V.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2017年第23期165-173,共9页 Journal of Mechanical Engineering
基金 国家自然科学基金(51175271) 浙江省高等学校中青年学科带头人学术攀登计划(pd2013091)资助项目
关键词 压电微夹钳 四自由度 结构设计 特性分析与测试 piezoelectric micro-gripper 4-DOF structure design~ analysis and test of performance
  • 相关文献

参考文献3

二级参考文献30

  • 1蔡建华,黄心汉,吕遐东,王敏.一种集成微力检测的压电式微夹钳[J].机器人,2006,28(1):59-64. 被引量:10
  • 2李路明,王立鼎.SMA微夹钳的研究[J].光学精密工程,1997,5(2):37-42. 被引量:7
  • 3[1]Due T C,Creemer J E Piezoresistive cantilever beam for force sensing in two dimensions[J].IEEE Sensors Journal,2007,7(1):96-104.
  • 4[2]Sun Y,Nelson B J.A bulk microfabricated multi-axis capacitive cellular force sensor using transverse comb drives[J].Micromech Microeng,2002,12(6):832-840.
  • 5[3]Shen Y,Winder E.Closed-loop optimal control-enabled piezoelectric microforce sensors[J].IEEE/ASME Transactions on Mechatronics,2006,11(4):420-427.
  • 6[4]Carmen K M F,Elhajj I.A 2-D PVDF force sensing system for micromanipulation and microassembly[C]//Pro of the 2002 IEEE Inter Conf on Robotics and Automation.Washington,USA,2002:1489-1494.
  • 7[5]Waqas A E A force feedback interface for cell injection[C]//Proc of the First Joint Eurohaptic Conf and Sym on Haptic Interfaces for Virtual Environment and Teleoperator Systems.Pisa,Italy,2005:391-400.
  • 8[6]Anand P,Maxim E Evaluating the role of force feedback for biomanipulation task[C]//Symp on Haptic Interfaces for Virtual Environment and Teleoperator Systems.Alexandria,USA,2006:11-18.
  • 9KARIN N A, KENNETH C, DIRCH H P, etal.. Electrothermal microgrippers for pick-and-place op- erations[J]. Microelectron. Eng., 2008, 85(5-6): 1128-1130.
  • 10HOXHOLD B, BUTTGENBACH S. Easily man ageable, electrothermally actuated silicon micro gripper[J]. Microsyst. Technol, 2010, 16 (8-9) : 1609-1617.

共引文献22

同被引文献16

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部