摘要
基于正规乘积和反正规乘积性质与双变量厄米多项式的母函数形式,利用相干态表象完备性的高斯积分形式,系统而全面的导出双变量厄米多项式的算符恒等式、递推关系与积分公式,此推导方法简捷明了.
Based on the properties of normal (anti- normal) ordering product of quantum operators and Baker-Hausdorff operator equation, using the Gauss integral form of coherent state representation completeness, we derive some operator identities, recursive relations and integral formulas related to two- variable Hermite polynomial.Compared with other methods, this method is easier and heater in theory and application.
出处
《大学物理》
北大核心
2017年第12期15-17,共3页
College Physics
基金
常州工学院教研项目(A3-4400-17-063
A3-4406-16-049X)资助
关键词
双变量厄米多项式
正规乘积
反正规乘积
递推关系
积分公式
two-variable Hermite polynomial
normal ordering product
anti-normal ordering product
recur-sive relation
integral formula